summaryrefslogtreecommitdiff
path: root/src/Helium/Instructions/Base.agda
diff options
context:
space:
mode:
authorGreg Brown <greg.brown@cl.cam.ac.uk>2022-04-18 15:05:24 +0100
committerGreg Brown <greg.brown@cl.cam.ac.uk>2022-04-18 15:21:38 +0100
commit00a0ce9082b4cc1389815defcc806efd4a9b80f4 (patch)
treeaebdc99b954be177571697fc743ee75841c98b2e /src/Helium/Instructions/Base.agda
parent24845ef25e12864711552ebc75a1f54903bee50c (diff)
Do a big refactor.
- Replace the decidable predicates on expressions and statements with separate data types. - Reorganise the Hoare logic semantics to remove unnecessary definitions. - Make liberal use of modules to group related definitions together. - Unify the types for denotational and Hoare logic semantics. - Make bits an abstraction of array types.
Diffstat (limited to 'src/Helium/Instructions/Base.agda')
-rw-r--r--src/Helium/Instructions/Base.agda240
1 files changed, 129 insertions, 111 deletions
diff --git a/src/Helium/Instructions/Base.agda b/src/Helium/Instructions/Base.agda
index d157d5a..3e1bb5f 100644
--- a/src/Helium/Instructions/Base.agda
+++ b/src/Helium/Instructions/Base.agda
@@ -11,18 +11,25 @@ module Helium.Instructions.Base where
open import Data.Bool as Bool using (true; false)
open import Data.Fin as Fin using (Fin; Fin′; zero; suc; toℕ)
open import Data.Fin.Patterns
+open import Data.Integer as ℤ using (1ℤ; 0ℤ; -1ℤ)
open import Data.Nat as ℕ using (ℕ; zero; suc)
import Data.Nat.Properties as ℕₚ
+open import Data.Product using (uncurry)
open import Data.Sum using ([_,_]′; inj₂)
open import Data.Vec as Vec using (Vec; []; _∷_)
open import Data.Vec.Relation.Unary.All using (All; []; _∷_)
open import Function using (_$_)
open import Helium.Data.Pseudocode.Core as Core public
- hiding (module Code)
import Helium.Instructions.Core as Instr
import Relation.Binary.PropositionalEquality as P
open import Relation.Nullary.Decidable.Core using (True)
+private
+ variable
+ k m n : ℕ
+ t : Type
+ Γ : Vec Type n
+
--- Types
beat : Type
@@ -43,75 +50,85 @@ State = array (bits 32) 32 -- S
∷ beat -- _BeatId
∷ []
-open Core.Code State public
-
--- References
-- Direct from State
-S : ∀ {n Γ} → Expression {n} Γ (array (bits 32) 32)
+S : Reference State Γ (array (bits 32) 32)
S = state 0F
-R : ∀ {n Γ} → Expression {n} Γ (array (bits 32) 16)
+R : Reference State Γ (array (bits 32) 16)
R = state 1F
-VPR-P0 : ∀ {n Γ} → Expression {n} Γ (bits 16)
+VPR-P0 : Reference State Γ (bits 16)
VPR-P0 = state 2F
-VPR-mask : ∀ {n Γ} → Expression {n} Γ (bits 8)
+VPR-mask : Reference State Γ (bits 8)
VPR-mask = state 3F
-FPSCR-QC : ∀ {n Γ} → Expression {n} Γ bit
+FPSCR-QC : Reference State Γ bit
FPSCR-QC = state 4F
-AdvanceVPTState : ∀ {n Γ} → Expression {n} Γ bool
+AdvanceVPTState : Reference State Γ bool
AdvanceVPTState = state 5F
-BeatId : ∀ {n Γ} → Expression {n} Γ beat
+BeatId : Reference State Γ beat
BeatId = state 6F
-- Indirect
-group : ∀ {n Γ t k} m → Expression {n} Γ (asType t (k ℕ.* suc m)) → Expression Γ (array (asType t k) (suc m))
-group {k = k} zero x = [ cast (P.trans (ℕₚ.*-comm k 1) (ℕₚ.+-comm k 0)) x ]
-group {k = k} (suc m) x = group m (slice x′ (lit (Fin.fromℕ k ′f))) ∶ [ slice (cast (ℕₚ.+-comm k _) x′) (lit (zero ′f)) ]
+index : Expression State Γ (array t (suc m)) → Expression State Γ (fin (suc m)) → Expression State Γ t
+index {m = m} x i = unbox (slice (cast (ℕₚ.+-comm 1 m) x) i)
+
+*index : Reference State Γ (array t (suc m)) → Expression State Γ (fin (suc m)) → Reference State Γ t
+*index {m = m} x i = unbox (slice (cast (ℕₚ.+-comm 1 m) x) i)
+
+*index-group : Reference State Γ (array t (k ℕ.* suc m)) → Expression State Γ (fin (suc m)) → Reference State Γ (array t k)
+*index-group {k = k} {m = m} x i = slice (cast eq x) (fin reindex (tup (i ∷ [])))
where
- x′ = cast (P.trans (ℕₚ.*-comm k _) (P.cong (k ℕ.+_) (ℕₚ.*-comm _ k))) x
+ eq = P.trans (ℕₚ.*-comm k (suc m)) (ℕₚ.+-comm k (m ℕ.* k))
+
+ reindex : ∀ {m n} → Fin (suc m) → Fin (suc (m ℕ.* n))
+ reindex {m} {n} 0F = Fin.inject+ (m ℕ.* n) 0F
+ reindex {suc m} {n} (suc i) = Fin.cast (ℕₚ.+-suc n (m ℕ.* n)) (Fin.raise n (reindex i))
-join : ∀ {n Γ t k m} → Expression {n} Γ (array (asType t k) (suc m)) → Expression Γ (asType t (k ℕ.* suc m))
-join {k = k} {zero} x = cast (P.trans (ℕₚ.+-comm 0 k) (ℕₚ.*-comm 1 k)) (unbox x)
-join {k = k} {suc m} x = cast eq (join (slice x (lit (Fin.fromℕ 1 ′f))) ∶ unbox (slice {i = suc m} (cast (ℕₚ.+-comm 1 _) x) (lit (zero ′f))))
+index-group : Expression State Γ (array t (k ℕ.* suc m)) → Expression State Γ (fin (suc m)) → Expression State Γ (array t k)
+index-group {k = k} {m = m} x i = slice (cast eq x) (fin reindex (tup (i ∷ [])))
where
- eq = P.trans (P.cong (k ℕ.+_) (ℕₚ.*-comm k (suc m))) (ℕₚ.*-comm (suc (suc m)) k)
+ eq = P.trans (ℕₚ.*-comm k (suc m)) (ℕₚ.+-comm k (m ℕ.* k))
-index : ∀ {n Γ t m} → Expression {n} Γ (asType t (suc m)) → Expression Γ (fin (suc m)) → Expression Γ (elemType t)
-index {m = m} x i = unbox (slice (cast (ℕₚ.+-comm 1 m) x) i)
+ reindex : ∀ {m n} → Fin (suc m) → Fin (suc (m ℕ.* n))
+ reindex {m} {n} 0F = Fin.inject+ (m ℕ.* n) 0F
+ reindex {suc m} {n} (suc i) = Fin.cast (ℕₚ.+-suc n (m ℕ.* n)) (Fin.raise n (reindex i))
+
+Q[_,_] : Expression State Γ (fin 8) → Expression State Γ (fin 4) → Reference State Γ (bits 32)
+Q[ i , j ] = *index S (fin (uncurry Fin.combine) (tup (i ∷ j ∷ [])))
-Q : ∀ {n Γ} → Expression {n} Γ (array (array (bits 32) 4) 8)
-Q = group 7 S
+elem : ∀ m → Expression State Γ (array t (suc k ℕ.* m)) → Expression State Γ (fin (suc k)) → Expression State Γ (array t m)
+elem {k = k} zero x i = cast (ℕₚ.*-comm k 0) x
+elem {k = k} (suc m) x i = index-group (cast (ℕₚ.*-comm (suc k) (suc m)) x) i
-elem : ∀ {n Γ t k} m → Expression {n} Γ (asType t (k ℕ.* m)) → Expression Γ (fin k) → Expression Γ (asType t m)
-elem {k = zero} m x i = abort i
-elem {k = suc k} zero x i = cast (ℕₚ.*-comm k 0) x
-elem {k = suc k} (suc m) x i = index (group k (cast (ℕₚ.*-comm (suc k) (suc m)) x)) i
+*elem : ∀ m → Reference State Γ (array t (suc k ℕ.* m)) → Expression State Γ (fin (suc k)) → Reference State Γ (array t m)
+*elem {k = k} zero x i = cast (ℕₚ.*-comm k 0) x
+*elem {k = k} (suc m) x i = *index-group (cast (ℕₚ.*-comm (suc k) (suc m)) x) i
--- Other utiliies
-hasBit : ∀ {n Γ m} → Expression {n} Γ (bits (suc m)) → Expression Γ (fin (suc m)) → Expression Γ bool
-hasBit {n} x i = index x i ≟ lit (true ′x)
+hasBit : Expression State Γ (bits (suc m)) → Expression State Γ (fin (suc m)) → Expression State Γ bool
+hasBit {n} x i = index x i ≟ lit true
-sliceⁱ : ∀ {n Γ m} → ℕ → Expression {n} Γ int → Expression Γ (bits m)
-sliceⁱ {m = zero} n i = lit ([] ′xs)
-sliceⁱ {m = suc m} n i = sliceⁱ (suc n) i ∶ [ get n i ]
+sliceⁱ : ℕ → Expression State Γ int → Expression State Γ (bits m)
+sliceⁱ {m = zero} n i = lit []
+sliceⁱ {m = suc m} n i = sliceⁱ (suc n) i ∶ [ getBit n i ]
--- Functions
-Int : ∀ {n} → Function (bits n ∷ bool ∷ []) int
+Int : Function State (bits n ∷ bool ∷ []) int
Int = skip ∙return (if var 1F then uint (var 0F) else sint (var 0F))
-- arguments swapped, pred n
-SignedSatQ : ∀ n → Function (int ∷ []) (tuple 2 (bits (suc n) ∷ bool ∷ []))
-SignedSatQ n = declare (lit (true ′b)) (
+SignedSatQ : ∀ n → Function State (int ∷ []) (tuple (bits (suc n) ∷ bool ∷ []))
+SignedSatQ n = declare (lit true) (
if max <? var 1F
then
var 1F ≔ max
@@ -119,18 +136,18 @@ SignedSatQ n = declare (lit (true ′b)) (
then
var 1F ≔ min
else
- var 0F ≔ lit (false ′b)
+ var 0F ≔ lit false
∙return tup (sliceⁱ 0 (var 1F) ∷ var 0F ∷ []))
where
- max = lit (2 ′i) ^ n + - lit (1 ′i)
- min = - (lit (2 ′i) ^ n)
+ max = lit (ℤ.+ (2 ℕ.^ n) ℤ.+ -1ℤ)
+ min = lit (ℤ.- ℤ.+ (2 ℕ.^ n))
-- actual shift if 'shift + 1'
-LSL-C : ∀ {n} (shift : ℕ) → Function (bits n ∷ []) (tuple 2 (bits n ∷ bit ∷ []))
-LSL-C {n} shift = declare (var 0F ∶ lit ((Vec.replicate {n = (suc shift)} false) ′xs))
+LSL-C : ∀ (shift : ℕ) → Function State (bits n ∷ []) (tuple (bits n ∷ bit ∷ []))
+LSL-C {n} shift = declare (var 0F ∶ lit ((Vec.replicate {n = (suc shift)} false)))
(skip ∙return tup
- ( slice (var 0F) (lit (zero ′f))
- ∷ unbox (slice (cast eq (var 0F)) (lit (Fin.inject+ shift (Fin.fromℕ n) ′f)))
+ ( slice (var 0F) (lit 0F)
+ ∷ unbox (slice (cast eq (var 0F)) (lit (Fin.inject+ shift (Fin.fromℕ n))))
∷ []))
where
eq = P.trans (ℕₚ.+-comm 1 (shift ℕ.+ n)) (P.cong (ℕ._+ 1) (ℕₚ.+-comm shift n))
@@ -138,49 +155,50 @@ LSL-C {n} shift = declare (var 0F ∶ lit ((Vec.replicate {n = (suc shift)} fals
--- Procedures
private
- div2 : All Fin (4 ∷ []) → Fin 2
- div2 (zero ∷ []) = zero
- div2 (suc zero ∷ []) = zero
- div2 (suc (suc i) ∷ []) = suc zero
+ div2 : Fin 4 → Fin 2
+ div2 0F = 0F
+ div2 1F = 0F
+ div2 2F = 1F
+ div2 3F = 1F
-copyMasked : Procedure (fin 8 ∷ bits 32 ∷ beat ∷ elmtMask ∷ [])
+copyMasked : Procedure State (fin 8 ∷ bits 32 ∷ beat ∷ elmtMask ∷ [])
copyMasked = for 4
-- 0:e 1:dest 2:result 3:beat 4:elmtMask
( if hasBit (var 4F) (var 0F)
then
- elem 8 (index (index Q (var 1F)) (var 3F)) (var 0F) ≔ elem 8 (var 2F) (var 0F)
+ *elem 8 Q[ var 1F , var 3F ] (var 0F) ≔ elem 8 (var 2F) (var 0F)
) ∙end
-VPTAdvance : Procedure (beat ∷ [])
+VPTAdvance : Procedure State (beat ∷ [])
VPTAdvance = declare (fin div2 (tup (var 0F ∷ []))) (
- declare (elem 4 VPR-mask (var 0F)) (
+ declare (elem 4 (! VPR-mask) (var 0F)) (
-- 0:vptState 1:maskId 2:beat
- if var 0F ≟ lit ((true ∷ false ∷ false ∷ false ∷ []) ′xs)
+ if var 0F ≟ lit (true ∷ false ∷ false ∷ false ∷ [])
then
- var 0F ≔ lit (Vec.replicate false ′xs)
- else if inv (var 0F ≟ lit (Vec.replicate false ′xs))
+ var 0F ≔ lit (Vec.replicate false)
+ else if inv (var 0F ≟ lit (Vec.replicate false))
then (
- declare (lit (false ′x)) (
+ declare (lit false) (
-- 0:inv 1:vptState 2:maskId 3:beat
- tup (var 1F ∷ var 0F ∷ []) ≔ call (LSL-C 0) (var 1F ∷ []) ∙
- if var 0F ≟ lit (true ′x)
+ cons (var 1F) (cons (var 0F) nil) ≔ call (LSL-C 0) (var 1F ∷ []) ∙
+ if var 0F ≟ lit true
then
- elem 4 VPR-P0 (var 3F) ≔ not (elem 4 VPR-P0 (var 3F)))) ∙
- if get 0 (asInt (var 2F)) ≟ lit (true ′x)
+ *elem 4 VPR-P0 (var 3F) ≔ not (elem 4 (! VPR-P0) (var 3F)))) ∙
+ if getBit 0 (asInt (var 2F)) ≟ lit true
then
- elem 4 VPR-mask (var 1F) ≔ var 0F))
+ *elem 4 VPR-mask (var 1F) ≔ var 0F))
∙end
-VPTActive : Function (beat ∷ []) bool
-VPTActive = skip ∙return inv (elem 4 VPR-mask (fin div2 (tup (var 0F ∷ []))) ≟ lit (Vec.replicate false ′xs))
+VPTActive : Function State (beat ∷ []) bool
+VPTActive = skip ∙return inv (elem 4 (! VPR-mask) (fin div2 (tup (var 0F ∷ []))) ≟ lit (Vec.replicate false))
-GetCurInstrBeat : Function [] (tuple 2 (beat ∷ elmtMask ∷ []))
-GetCurInstrBeat = declare (lit (Vec.replicate true ′xs)) (
+GetCurInstrBeat : Function State [] (tuple (beat ∷ elmtMask ∷ []))
+GetCurInstrBeat = declare (lit (Vec.replicate true)) (
-- 0:elmtMask 1:beat
- if call VPTActive (BeatId ∷ [])
+ if call VPTActive (! BeatId ∷ [])
then
- var 0F ≔ var 0F and elem 4 VPR-P0 BeatId
- ∙return tup (BeatId ∷ var 0F ∷ []))
+ var 0F ≔ var 0F and elem 4 (! VPR-P0) (! BeatId)
+ ∙return tup (! BeatId ∷ var 0F ∷ []))
-- Assumes:
-- MAX_OVERLAPPING_INSTRS = 1
@@ -188,113 +206,113 @@ GetCurInstrBeat = declare (lit (Vec.replicate true ′xs)) (
-- BEATS_PER_TICK = 4
-- procedure argument is action of DecodeExecute
-- and more!
-ExecBeats : Procedure [] → Procedure []
+ExecBeats : Procedure State [] → Procedure State []
ExecBeats DecodeExec =
for 4 (
-- 0:beatId
BeatId ≔ var 0F ∙
- AdvanceVPTState ≔ lit (true ′b) ∙
+ AdvanceVPTState ≔ lit true ∙
invoke DecodeExec [] ∙
- if AdvanceVPTState
+ if ! AdvanceVPTState
then
invoke VPTAdvance (var 0F ∷ []))
∙end
-from32 : ∀ size {n Γ} → Expression {n} Γ (bits 32) → Expression Γ (array (bits (toℕ (Instr.Size.esize size))) (toℕ (Instr.Size.elements size)))
-from32 Instr.8bit = group 3
-from32 Instr.16bit = group 1
-from32 Instr.32bit = group 0
+*index-32 : ∀ size → Reference State Γ (bits 32) → Expression State Γ (fin (toℕ (Instr.Size.elements size))) → Reference State Γ (bits (toℕ (Instr.Size.esize size)))
+*index-32 Instr.8bit = *index-group
+*index-32 Instr.16bit = *index-group
+*index-32 Instr.32bit = *index-group
-to32 : ∀ size {n Γ} → Expression {n} Γ (array (bits (toℕ (Instr.Size.esize size))) (toℕ (Instr.Size.elements size))) → Expression Γ (bits 32)
-to32 Instr.8bit = join
-to32 Instr.16bit = join
-to32 Instr.32bit = join
+index-32 : ∀ size → Expression State Γ (bits 32) → Expression State Γ (fin (toℕ (Instr.Size.elements size))) → Expression State Γ (bits (toℕ (Instr.Size.esize size)))
+index-32 Instr.8bit = index-group
+index-32 Instr.16bit = index-group
+index-32 Instr.32bit = index-group
module _ (d : Instr.VecOp₂) where
open Instr.VecOp₂ d
-- 0:op₂ 1:e 2:op₁ 3:result 4:elmtMask 5:curBeat
- vec-op₂′ : Statement (bits (toℕ esize) ∷ fin (toℕ elements) ∷ array (bits (toℕ esize)) (toℕ elements) ∷ array (bits (toℕ esize)) (toℕ elements) ∷ elmtMask ∷ beat ∷ []) → Procedure []
- vec-op₂′ op = declare (lit (zero ′f)) (
- declare (lit (Vec.replicate false ′xs)) (
+ vec-op₂′ : Statement State (bits (toℕ esize) ∷ fin (toℕ elements) ∷ bits 32 ∷ bits 32 ∷ elmtMask ∷ beat ∷ []) → Procedure State []
+ vec-op₂′ op = declare (lit 0F) (
+ declare (lit (Vec.replicate false)) (
-- 0:elmtMask 1:curBeat
- tup (var 1F ∷ var 0F ∷ []) ≔ call GetCurInstrBeat [] ∙
- declare (lit ((Vec.replicate false ′xs) ′a)) (
- declare (from32 size (index (index Q (lit (src₁ ′f))) (var 2F))) (
+ cons (var 1F) (cons (var 0F) nil) ≔ call GetCurInstrBeat [] ∙
+ declare (lit (Vec.replicate false)) (
+ declare (! Q[ lit src₁ , var 2F ]) (
-- 0:op₁ 1:result 2:elmtMask 3:curBeat
for (toℕ elements) (
-- 0:e 1:op₁ 2:result 3:elmtMask 4:curBeat
declare op₂ op ) ∙
-- 0:op₁ 1:result 2:elmtMask 3:curBeat
- invoke copyMasked (lit (dest ′f) ∷ to32 size (var 1F) ∷ var 3F ∷ var 2F ∷ [])))))
+ invoke copyMasked (lit dest ∷ var 1F ∷ var 3F ∷ var 2F ∷ [])))))
∙end
where
-- 0:e 1:op₁ 2:result 3:elmtMask 4:curBeat
op₂ =
- [ (λ src₂ → index (from32 size (index R (lit (src₂ ′f)))) (lit (zero ′f)))
- , (λ src₂ → index (from32 size (index (index Q (lit (src₂ ′f))) (var 4F))) (var 0F))
+ [ (λ src₂ → index-32 size (index (! R) (lit src₂)) (lit 0F))
+ , (λ src₂ → index-32 size (! Q[ lit src₂ , var 4F ]) (var 0F))
]′ src₂
- vec-op₂ : Function (bits (toℕ esize) ∷ bits (toℕ esize) ∷ []) (bits (toℕ esize)) → Procedure []
- vec-op₂ op = vec-op₂′ (index (var 3F) (var 1F) ≔ call op (index (var 2F) (var 1F) ∷ var 0F ∷ []))
+ vec-op₂ : Function State (bits (toℕ esize) ∷ bits (toℕ esize) ∷ []) (bits (toℕ esize)) → Procedure State []
+ vec-op₂ op = vec-op₂′ (*index-32 size (var 3F) (var 1F) ≔ call op (index-32 size (var 2F) (var 1F) ∷ var 0F ∷ []))
-vadd : Instr.VAdd → Procedure []
+vadd : Instr.VAdd → Procedure State []
vadd d = vec-op₂ d (skip ∙return sliceⁱ 0 (uint (var 0F) + uint (var 1F)))
-vsub : Instr.VSub → Procedure []
+vsub : Instr.VSub → Procedure State []
vsub d = vec-op₂ d (skip ∙return sliceⁱ 0 (uint (var 0F) - uint (var 1F)))
-vhsub : Instr.VHSub → Procedure []
+vhsub : Instr.VHSub → Procedure State []
vhsub d = vec-op₂ op₂ (skip ∙return sliceⁱ 1 (toInt (var 0F) - toInt (var 1F)))
- where open Instr.VHSub d; toInt = λ i → call Int (i ∷ lit (unsigned ′b) ∷ [])
+ where open Instr.VHSub d; toInt = λ i → call Int (i ∷ lit unsigned ∷ [])
-vmul : Instr.VMul → Procedure []
+vmul : Instr.VMul → Procedure State []
vmul d = vec-op₂ d (skip ∙return sliceⁱ 0 (sint (var 0F) * sint (var 1F)))
-vmulh : Instr.VMulH → Procedure []
+vmulh : Instr.VMulH → Procedure State []
vmulh d = vec-op₂ op₂ (skip ∙return sliceⁱ (toℕ esize) (toInt (var 0F) * toInt (var 1F)))
where
- open Instr.VMulH d; toInt = λ i → call Int (i ∷ lit (unsigned ′b) ∷ [])
+ open Instr.VMulH d; toInt = λ i → call Int (i ∷ lit unsigned ∷ [])
-vrmulh : Instr.VRMulH → Procedure []
-vrmulh d = vec-op₂ op₂ (skip ∙return sliceⁱ (toℕ esize) (toInt (var 0F) * toInt (var 1F) + lit (1 ′i) << toℕ esize-1))
+vrmulh : Instr.VRMulH → Procedure State []
+vrmulh d = vec-op₂ op₂ (skip ∙return sliceⁱ (toℕ esize) (toInt (var 0F) * toInt (var 1F) + lit 1ℤ << toℕ esize-1))
where
- open Instr.VRMulH d; toInt = λ i → call Int (i ∷ lit (unsigned ′b) ∷ [])
+ open Instr.VRMulH d; toInt = λ i → call Int (i ∷ lit unsigned ∷ [])
-vmla : Instr.VMlA → Procedure []
+vmla : Instr.VMlA → Procedure State []
vmla d = vec-op₂ op₂ (skip ∙return sliceⁱ (toℕ esize) (toInt (var 0F) * element₂ + toInt (var 1F)))
where
open Instr.VMlA d
op₂ = record { size = size ; dest = acc ; src₁ = src₁ ; src₂ = inj₂ acc }
- toInt = λ i → call Int (i ∷ lit (unsigned ′b) ∷ [])
- element₂ = toInt (index (from32 size (index R (lit (src₂ ′f)))) (lit (zero ′f)))
+ toInt = λ i → call Int (i ∷ lit unsigned ∷ [])
+ element₂ = toInt (index-32 size (index (! R) (lit src₂)) (lit 0F))
private
- vqr?dmulh : Instr.VQDMulH → Function (int ∷ int ∷ []) int → Procedure []
+ vqr?dmulh : Instr.VQDMulH → Function State (int ∷ int ∷ []) int → Procedure State []
vqr?dmulh d f = vec-op₂′ d (
-- 0:op₂ 1:e 2:op₁ 3:result 4:elmtMask 5:curBeat
- declare (call f (sint (index (var 2F) (var 1F)) ∷ sint (var 0F) ∷ [])) (
- declare (lit (false ′b)) (
+ declare (call f (sint (index-32 size (var 2F) (var 1F)) ∷ sint (var 0F) ∷ [])) (
+ declare (lit false) (
-- 0:sat 1:value 2:op₂ 3:e 4:op₁ 5:result 6:elmtMask 7:curBeat
- tup (index (var 5F) (var 3F) ∷ var 0F ∷ []) ≔ call (SignedSatQ (toℕ esize-1)) (var 1F ∷ []) ∙
+ cons (*index-32 size (var 5F) (var 3F)) (cons (var 0F) nil) ≔ call (SignedSatQ (toℕ esize-1)) (var 1F ∷ []) ∙
if var 0F && hasBit (var 6F) (fin e*esize>>3 (tup ((var 3F) ∷ [])))
then
- FPSCR-QC ≔ lit (true ′x))))
+ FPSCR-QC ≔ lit true)))
where
open Instr.VecOp₂ d
- e*esize>>3 : All Fin (toℕ elements ∷ []) → Fin 4
- e*esize>>3 (x ∷ []) = helper size x
+ e*esize>>3 : Fin (toℕ elements) → Fin 4
+ e*esize>>3 x = helper size x
where
helper : ∀ size → Fin′ (Instr.Size.elements size) → Fin 4
helper Instr.8bit i = Fin.combine i (zero {0})
helper Instr.16bit i = Fin.combine i (zero {1})
helper Instr.32bit i = Fin.combine i zero
-vqdmulh : Instr.VQDMulH → Procedure []
-vqdmulh d = vqr?dmulh d (skip ∙return lit (2 ′i) * var 0F * var 1F >> toℕ esize)
+vqdmulh : Instr.VQDMulH → Procedure State []
+vqdmulh d = vqr?dmulh d (skip ∙return lit (ℤ.+ 2) * var 0F * var 1F >> toℕ esize)
where open Instr.VecOp₂ d using (esize)
-vqrdmulh : Instr.VQRDMulH → Procedure []
-vqrdmulh d = vqr?dmulh d (skip ∙return lit (2 ′i) * var 0F * var 1F + lit (1 ′i) << toℕ esize-1 >> toℕ esize)
+vqrdmulh : Instr.VQRDMulH → Procedure State []
+vqrdmulh d = vqr?dmulh d (skip ∙return lit (ℤ.+ 2) * var 0F * var 1F + lit 1ℤ << toℕ esize-1 >> toℕ esize)
where open Instr.VecOp₂ d using (esize; esize-1)