blob: 3e1bb5f87c636400047bffe679d43dbae7899f89 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
|
------------------------------------------------------------------------
-- Agda Helium
--
-- Definition of instructions using the Armv8-M pseudocode.
------------------------------------------------------------------------
{-# OPTIONS --safe --without-K #-}
module Helium.Instructions.Base where
open import Data.Bool as Bool using (true; false)
open import Data.Fin as Fin using (Fin; Fin′; zero; suc; toℕ)
open import Data.Fin.Patterns
open import Data.Integer as ℤ using (1ℤ; 0ℤ; -1ℤ)
open import Data.Nat as ℕ using (ℕ; zero; suc)
import Data.Nat.Properties as ℕₚ
open import Data.Product using (uncurry)
open import Data.Sum using ([_,_]′; inj₂)
open import Data.Vec as Vec using (Vec; []; _∷_)
open import Data.Vec.Relation.Unary.All using (All; []; _∷_)
open import Function using (_$_)
open import Helium.Data.Pseudocode.Core as Core public
import Helium.Instructions.Core as Instr
import Relation.Binary.PropositionalEquality as P
open import Relation.Nullary.Decidable.Core using (True)
private
variable
k m n : ℕ
t : Type
Γ : Vec Type n
--- Types
beat : Type
beat = fin 4
elmtMask : Type
elmtMask = bits 4
--- State
State : Vec Type _
State = array (bits 32) 32 -- S
∷ array (bits 32) 16 -- R
∷ bits 16 -- VPR-P0
∷ bits 8 -- VPR-mask
∷ bit -- FPSCR-QC
∷ bool -- _AdvanceVPTState
∷ beat -- _BeatId
∷ []
--- References
-- Direct from State
S : Reference State Γ (array (bits 32) 32)
S = state 0F
R : Reference State Γ (array (bits 32) 16)
R = state 1F
VPR-P0 : Reference State Γ (bits 16)
VPR-P0 = state 2F
VPR-mask : Reference State Γ (bits 8)
VPR-mask = state 3F
FPSCR-QC : Reference State Γ bit
FPSCR-QC = state 4F
AdvanceVPTState : Reference State Γ bool
AdvanceVPTState = state 5F
BeatId : Reference State Γ beat
BeatId = state 6F
-- Indirect
index : Expression State Γ (array t (suc m)) → Expression State Γ (fin (suc m)) → Expression State Γ t
index {m = m} x i = unbox (slice (cast (ℕₚ.+-comm 1 m) x) i)
*index : Reference State Γ (array t (suc m)) → Expression State Γ (fin (suc m)) → Reference State Γ t
*index {m = m} x i = unbox (slice (cast (ℕₚ.+-comm 1 m) x) i)
*index-group : Reference State Γ (array t (k ℕ.* suc m)) → Expression State Γ (fin (suc m)) → Reference State Γ (array t k)
*index-group {k = k} {m = m} x i = slice (cast eq x) (fin reindex (tup (i ∷ [])))
where
eq = P.trans (ℕₚ.*-comm k (suc m)) (ℕₚ.+-comm k (m ℕ.* k))
reindex : ∀ {m n} → Fin (suc m) → Fin (suc (m ℕ.* n))
reindex {m} {n} 0F = Fin.inject+ (m ℕ.* n) 0F
reindex {suc m} {n} (suc i) = Fin.cast (ℕₚ.+-suc n (m ℕ.* n)) (Fin.raise n (reindex i))
index-group : Expression State Γ (array t (k ℕ.* suc m)) → Expression State Γ (fin (suc m)) → Expression State Γ (array t k)
index-group {k = k} {m = m} x i = slice (cast eq x) (fin reindex (tup (i ∷ [])))
where
eq = P.trans (ℕₚ.*-comm k (suc m)) (ℕₚ.+-comm k (m ℕ.* k))
reindex : ∀ {m n} → Fin (suc m) → Fin (suc (m ℕ.* n))
reindex {m} {n} 0F = Fin.inject+ (m ℕ.* n) 0F
reindex {suc m} {n} (suc i) = Fin.cast (ℕₚ.+-suc n (m ℕ.* n)) (Fin.raise n (reindex i))
Q[_,_] : Expression State Γ (fin 8) → Expression State Γ (fin 4) → Reference State Γ (bits 32)
Q[ i , j ] = *index S (fin (uncurry Fin.combine) (tup (i ∷ j ∷ [])))
elem : ∀ m → Expression State Γ (array t (suc k ℕ.* m)) → Expression State Γ (fin (suc k)) → Expression State Γ (array t m)
elem {k = k} zero x i = cast (ℕₚ.*-comm k 0) x
elem {k = k} (suc m) x i = index-group (cast (ℕₚ.*-comm (suc k) (suc m)) x) i
*elem : ∀ m → Reference State Γ (array t (suc k ℕ.* m)) → Expression State Γ (fin (suc k)) → Reference State Γ (array t m)
*elem {k = k} zero x i = cast (ℕₚ.*-comm k 0) x
*elem {k = k} (suc m) x i = *index-group (cast (ℕₚ.*-comm (suc k) (suc m)) x) i
--- Other utiliies
hasBit : Expression State Γ (bits (suc m)) → Expression State Γ (fin (suc m)) → Expression State Γ bool
hasBit {n} x i = index x i ≟ lit true
sliceⁱ : ℕ → Expression State Γ int → Expression State Γ (bits m)
sliceⁱ {m = zero} n i = lit []
sliceⁱ {m = suc m} n i = sliceⁱ (suc n) i ∶ [ getBit n i ]
--- Functions
Int : Function State (bits n ∷ bool ∷ []) int
Int = skip ∙return (if var 1F then uint (var 0F) else sint (var 0F))
-- arguments swapped, pred n
SignedSatQ : ∀ n → Function State (int ∷ []) (tuple (bits (suc n) ∷ bool ∷ []))
SignedSatQ n = declare (lit true) (
if max <? var 1F
then
var 1F ≔ max
else if var 1F <? min
then
var 1F ≔ min
else
var 0F ≔ lit false
∙return tup (sliceⁱ 0 (var 1F) ∷ var 0F ∷ []))
where
max = lit (ℤ.+ (2 ℕ.^ n) ℤ.+ -1ℤ)
min = lit (ℤ.- ℤ.+ (2 ℕ.^ n))
-- actual shift if 'shift + 1'
LSL-C : ∀ (shift : ℕ) → Function State (bits n ∷ []) (tuple (bits n ∷ bit ∷ []))
LSL-C {n} shift = declare (var 0F ∶ lit ((Vec.replicate {n = (suc shift)} false)))
(skip ∙return tup
( slice (var 0F) (lit 0F)
∷ unbox (slice (cast eq (var 0F)) (lit (Fin.inject+ shift (Fin.fromℕ n))))
∷ []))
where
eq = P.trans (ℕₚ.+-comm 1 (shift ℕ.+ n)) (P.cong (ℕ._+ 1) (ℕₚ.+-comm shift n))
--- Procedures
private
div2 : Fin 4 → Fin 2
div2 0F = 0F
div2 1F = 0F
div2 2F = 1F
div2 3F = 1F
copyMasked : Procedure State (fin 8 ∷ bits 32 ∷ beat ∷ elmtMask ∷ [])
copyMasked = for 4
-- 0:e 1:dest 2:result 3:beat 4:elmtMask
( if hasBit (var 4F) (var 0F)
then
*elem 8 Q[ var 1F , var 3F ] (var 0F) ≔ elem 8 (var 2F) (var 0F)
) ∙end
VPTAdvance : Procedure State (beat ∷ [])
VPTAdvance = declare (fin div2 (tup (var 0F ∷ []))) (
declare (elem 4 (! VPR-mask) (var 0F)) (
-- 0:vptState 1:maskId 2:beat
if var 0F ≟ lit (true ∷ false ∷ false ∷ false ∷ [])
then
var 0F ≔ lit (Vec.replicate false)
else if inv (var 0F ≟ lit (Vec.replicate false))
then (
declare (lit false) (
-- 0:inv 1:vptState 2:maskId 3:beat
cons (var 1F) (cons (var 0F) nil) ≔ call (LSL-C 0) (var 1F ∷ []) ∙
if var 0F ≟ lit true
then
*elem 4 VPR-P0 (var 3F) ≔ not (elem 4 (! VPR-P0) (var 3F)))) ∙
if getBit 0 (asInt (var 2F)) ≟ lit true
then
*elem 4 VPR-mask (var 1F) ≔ var 0F))
∙end
VPTActive : Function State (beat ∷ []) bool
VPTActive = skip ∙return inv (elem 4 (! VPR-mask) (fin div2 (tup (var 0F ∷ []))) ≟ lit (Vec.replicate false))
GetCurInstrBeat : Function State [] (tuple (beat ∷ elmtMask ∷ []))
GetCurInstrBeat = declare (lit (Vec.replicate true)) (
-- 0:elmtMask 1:beat
if call VPTActive (! BeatId ∷ [])
then
var 0F ≔ var 0F and elem 4 (! VPR-P0) (! BeatId)
∙return tup (! BeatId ∷ var 0F ∷ []))
-- Assumes:
-- MAX_OVERLAPPING_INSTRS = 1
-- _InstInfo[0].Valid = 1
-- BEATS_PER_TICK = 4
-- procedure argument is action of DecodeExecute
-- and more!
ExecBeats : Procedure State [] → Procedure State []
ExecBeats DecodeExec =
for 4 (
-- 0:beatId
BeatId ≔ var 0F ∙
AdvanceVPTState ≔ lit true ∙
invoke DecodeExec [] ∙
if ! AdvanceVPTState
then
invoke VPTAdvance (var 0F ∷ []))
∙end
*index-32 : ∀ size → Reference State Γ (bits 32) → Expression State Γ (fin (toℕ (Instr.Size.elements size))) → Reference State Γ (bits (toℕ (Instr.Size.esize size)))
*index-32 Instr.8bit = *index-group
*index-32 Instr.16bit = *index-group
*index-32 Instr.32bit = *index-group
index-32 : ∀ size → Expression State Γ (bits 32) → Expression State Γ (fin (toℕ (Instr.Size.elements size))) → Expression State Γ (bits (toℕ (Instr.Size.esize size)))
index-32 Instr.8bit = index-group
index-32 Instr.16bit = index-group
index-32 Instr.32bit = index-group
module _ (d : Instr.VecOp₂) where
open Instr.VecOp₂ d
-- 0:op₂ 1:e 2:op₁ 3:result 4:elmtMask 5:curBeat
vec-op₂′ : Statement State (bits (toℕ esize) ∷ fin (toℕ elements) ∷ bits 32 ∷ bits 32 ∷ elmtMask ∷ beat ∷ []) → Procedure State []
vec-op₂′ op = declare (lit 0F) (
declare (lit (Vec.replicate false)) (
-- 0:elmtMask 1:curBeat
cons (var 1F) (cons (var 0F) nil) ≔ call GetCurInstrBeat [] ∙
declare (lit (Vec.replicate false)) (
declare (! Q[ lit src₁ , var 2F ]) (
-- 0:op₁ 1:result 2:elmtMask 3:curBeat
for (toℕ elements) (
-- 0:e 1:op₁ 2:result 3:elmtMask 4:curBeat
declare op₂ op ) ∙
-- 0:op₁ 1:result 2:elmtMask 3:curBeat
invoke copyMasked (lit dest ∷ var 1F ∷ var 3F ∷ var 2F ∷ [])))))
∙end
where
-- 0:e 1:op₁ 2:result 3:elmtMask 4:curBeat
op₂ =
[ (λ src₂ → index-32 size (index (! R) (lit src₂)) (lit 0F))
, (λ src₂ → index-32 size (! Q[ lit src₂ , var 4F ]) (var 0F))
]′ src₂
vec-op₂ : Function State (bits (toℕ esize) ∷ bits (toℕ esize) ∷ []) (bits (toℕ esize)) → Procedure State []
vec-op₂ op = vec-op₂′ (*index-32 size (var 3F) (var 1F) ≔ call op (index-32 size (var 2F) (var 1F) ∷ var 0F ∷ []))
vadd : Instr.VAdd → Procedure State []
vadd d = vec-op₂ d (skip ∙return sliceⁱ 0 (uint (var 0F) + uint (var 1F)))
vsub : Instr.VSub → Procedure State []
vsub d = vec-op₂ d (skip ∙return sliceⁱ 0 (uint (var 0F) - uint (var 1F)))
vhsub : Instr.VHSub → Procedure State []
vhsub d = vec-op₂ op₂ (skip ∙return sliceⁱ 1 (toInt (var 0F) - toInt (var 1F)))
where open Instr.VHSub d; toInt = λ i → call Int (i ∷ lit unsigned ∷ [])
vmul : Instr.VMul → Procedure State []
vmul d = vec-op₂ d (skip ∙return sliceⁱ 0 (sint (var 0F) * sint (var 1F)))
vmulh : Instr.VMulH → Procedure State []
vmulh d = vec-op₂ op₂ (skip ∙return sliceⁱ (toℕ esize) (toInt (var 0F) * toInt (var 1F)))
where
open Instr.VMulH d; toInt = λ i → call Int (i ∷ lit unsigned ∷ [])
vrmulh : Instr.VRMulH → Procedure State []
vrmulh d = vec-op₂ op₂ (skip ∙return sliceⁱ (toℕ esize) (toInt (var 0F) * toInt (var 1F) + lit 1ℤ << toℕ esize-1))
where
open Instr.VRMulH d; toInt = λ i → call Int (i ∷ lit unsigned ∷ [])
vmla : Instr.VMlA → Procedure State []
vmla d = vec-op₂ op₂ (skip ∙return sliceⁱ (toℕ esize) (toInt (var 0F) * element₂ + toInt (var 1F)))
where
open Instr.VMlA d
op₂ = record { size = size ; dest = acc ; src₁ = src₁ ; src₂ = inj₂ acc }
toInt = λ i → call Int (i ∷ lit unsigned ∷ [])
element₂ = toInt (index-32 size (index (! R) (lit src₂)) (lit 0F))
private
vqr?dmulh : Instr.VQDMulH → Function State (int ∷ int ∷ []) int → Procedure State []
vqr?dmulh d f = vec-op₂′ d (
-- 0:op₂ 1:e 2:op₁ 3:result 4:elmtMask 5:curBeat
declare (call f (sint (index-32 size (var 2F) (var 1F)) ∷ sint (var 0F) ∷ [])) (
declare (lit false) (
-- 0:sat 1:value 2:op₂ 3:e 4:op₁ 5:result 6:elmtMask 7:curBeat
cons (*index-32 size (var 5F) (var 3F)) (cons (var 0F) nil) ≔ call (SignedSatQ (toℕ esize-1)) (var 1F ∷ []) ∙
if var 0F && hasBit (var 6F) (fin e*esize>>3 (tup ((var 3F) ∷ [])))
then
FPSCR-QC ≔ lit true)))
where
open Instr.VecOp₂ d
e*esize>>3 : Fin (toℕ elements) → Fin 4
e*esize>>3 x = helper size x
where
helper : ∀ size → Fin′ (Instr.Size.elements size) → Fin 4
helper Instr.8bit i = Fin.combine i (zero {0})
helper Instr.16bit i = Fin.combine i (zero {1})
helper Instr.32bit i = Fin.combine i zero
vqdmulh : Instr.VQDMulH → Procedure State []
vqdmulh d = vqr?dmulh d (skip ∙return lit (ℤ.+ 2) * var 0F * var 1F >> toℕ esize)
where open Instr.VecOp₂ d using (esize)
vqrdmulh : Instr.VQRDMulH → Procedure State []
vqrdmulh d = vqr?dmulh d (skip ∙return lit (ℤ.+ 2) * var 0F * var 1F + lit 1ℤ << toℕ esize-1 >> toℕ esize)
where open Instr.VecOp₂ d using (esize; esize-1)
|