summaryrefslogtreecommitdiff
path: root/src
diff options
context:
space:
mode:
authorGreg Brown <greg.brown@cl.cam.ac.uk>2022-04-05 12:06:33 +0100
committerGreg Brown <greg.brown@cl.cam.ac.uk>2022-04-05 12:06:33 +0100
commitb212c150ec0a9bf45cf6c28fba997693669e78d2 (patch)
tree65351de7452c7e9fd111354d185e10c94eb4c569 /src
parent6acd0e87fa8ab2a3230626b37f1cd02181810a1a (diff)
Minor clean up.
Diffstat (limited to 'src')
-rw-r--r--src/Helium/Algebra/Ordered/StrictTotal/Properties/Group.agda10
-rw-r--r--src/Helium/Data/Pseudocode/Algebra/Properties.agda5
2 files changed, 5 insertions, 10 deletions
diff --git a/src/Helium/Algebra/Ordered/StrictTotal/Properties/Group.agda b/src/Helium/Algebra/Ordered/StrictTotal/Properties/Group.agda
index e186c71..5cf2d5b 100644
--- a/src/Helium/Algebra/Ordered/StrictTotal/Properties/Group.agda
+++ b/src/Helium/Algebra/Ordered/StrictTotal/Properties/Group.agda
@@ -202,14 +202,14 @@ x⁻¹≈ε⇒x≈ε {x} x⁻¹≈ε = ≮∧≯⇒≈ (<-irrefl (Eq.sym x⁻¹
x<y⇒ε<y∙x⁻¹ : ∀ {x y} → x < y → ε < y ∙ x ⁻¹
x<y⇒ε<y∙x⁻¹ {x} {y} x<y = begin-strict
ε ≈˘⟨ inverseʳ x ⟩
- x ∙ x ⁻¹ <⟨ ∙-invariantʳ (x ⁻¹) x<y ⟩
+ x ∙ x ⁻¹ <⟨ ∙-monoʳ-< x<y ⟩
y ∙ x ⁻¹ ∎
ε<y∙x⁻¹⇒x<y : ∀ {x y} → ε < y ∙ x ⁻¹ → x < y
ε<y∙x⁻¹⇒x<y {x} {y} ε<yx⁻¹ = begin-strict
x ≈˘⟨ identityˡ x ⟩
- ε ∙ x <⟨ ∙-invariantʳ x ε<yx⁻¹ ⟩
- y ∙ x ⁻¹ ∙ x ≈⟨ assoc y (x ⁻¹) x ⟩
- y ∙ (x ⁻¹ ∙ x) ≈⟨ ∙-congˡ (inverseˡ x) ⟩
- y ∙ ε ≈⟨ identityʳ y ⟩
+ ε ∙ x <⟨ ∙-monoʳ-< ε<yx⁻¹ ⟩
+ y ∙ x ⁻¹ ∙ x ≈⟨ assoc y (x ⁻¹) x ⟩
+ y ∙ (x ⁻¹ ∙ x) ≈⟨ ∙-congˡ (inverseˡ x) ⟩
+ y ∙ ε ≈⟨ identityʳ y ⟩
y ∎
diff --git a/src/Helium/Data/Pseudocode/Algebra/Properties.agda b/src/Helium/Data/Pseudocode/Algebra/Properties.agda
index 1c52cda..39bd1e7 100644
--- a/src/Helium/Data/Pseudocode/Algebra/Properties.agda
+++ b/src/Helium/Data/Pseudocode/Algebra/Properties.agda
@@ -238,11 +238,6 @@ module ⌊⌋ where
⌊ x ⌋ ℤ.+ ⌊ y ⌋ ℤ.+ 1ℤ ∎
where open ℤ.Reasoning
- -- ⌊⌊x⌋+m/n⌋≈⌊x+m/n⌋ : ∀ x m {n} → (n>0 : n ℤ.> 0) →
- -- let n≉0 = ℤ.<⇒≉ n>0 ∘ ℤ.Eq.sym in
- -- ⌊ ⌊ x ⌋ /1 ℝ.* m /1 ℝ.* n≉0 ℤ.⁻¹ ⌋ ℤ.≈ ⌊ x ℝ.* m /1 ℝ.* n≉0 ℤ.⁻¹ ⌋
- -- ⌊⌊x⌋+m/n⌋≈⌊x+m/n⌋ x m {n} n>0 = ℤ.≤∧≮⇒≈ {!!} {!!}
-
f-monocont+int-preimage⇒⌊f⌊x⌋⌋≈⌊fx⌋ :
∀ (f : ℝ → ℝ) → ℝ.IsMonotoneContinuous f → ℝ.IntegerPreimage f →
∀ x → ⌊ f (⌊ x ⌋ /1) ⌋ ℤ.≈ ⌊ f x ⌋