summaryrefslogtreecommitdiff
path: root/src/Helium
diff options
context:
space:
mode:
Diffstat (limited to 'src/Helium')
-rw-r--r--src/Helium/Data/Pseudocode/Core.agda2
-rw-r--r--src/Helium/Data/Pseudocode/Manipulate.agda1291
-rw-r--r--src/Helium/Data/Pseudocode/Properties.agda109
3 files changed, 1401 insertions, 1 deletions
diff --git a/src/Helium/Data/Pseudocode/Core.agda b/src/Helium/Data/Pseudocode/Core.agda
index 79e34a2..a229e8a 100644
--- a/src/Helium/Data/Pseudocode/Core.agda
+++ b/src/Helium/Data/Pseudocode/Core.agda
@@ -265,8 +265,8 @@ module Code {o} (Σ : Vec Type o) where
_≔_ : ∀ {t} → (ref : Expression Γ t) → {canAssign : True (canAssign? ref)} → Expression Γ t → Statement Γ
declare : ∀ {t} → Expression Γ t → Statement (t ∷ Γ) → Statement Γ
invoke : ∀ {m Δ} → Procedure Δ → All (Expression Γ) {m} Δ → Statement Γ
- if_then_else_ : Expression Γ bool → Statement Γ → Statement Γ → Statement Γ
if_then_ : Expression Γ bool → Statement Γ → Statement Γ
+ if_then_else_ : Expression Γ bool → Statement Γ → Statement Γ → Statement Γ
for : ∀ m → Statement (fin m ∷ Γ) → Statement Γ
data ChangesState where
diff --git a/src/Helium/Data/Pseudocode/Manipulate.agda b/src/Helium/Data/Pseudocode/Manipulate.agda
new file mode 100644
index 0000000..1ea5302
--- /dev/null
+++ b/src/Helium/Data/Pseudocode/Manipulate.agda
@@ -0,0 +1,1291 @@
+------------------------------------------------------------------------
+-- Agda Helium
+--
+-- Definition of terms for use in assertions
+------------------------------------------------------------------------
+
+{-# OPTIONS --safe --without-K #-}
+
+open import Data.Vec using (Vec)
+open import Helium.Data.Pseudocode.Core
+
+module Helium.Data.Pseudocode.Manipulate
+ {o} {Σ : Vec Type o}
+ where
+
+import Algebra.Solver.IdempotentCommutativeMonoid as ComMonoidSolver
+open import Data.Fin as Fin using (Fin; suc)
+open import Data.Fin.Patterns
+open import Data.Nat as ℕ using (ℕ; suc; _⊔_)
+import Data.Nat.Induction as ℕᵢ
+import Data.Nat.Properties as ℕₚ
+open import Data.Nat.Solver using (module +-*-Solver)
+open import Data.Product using (∃; _×_; _,_; proj₁; proj₂; <_,_>)
+open import Data.Sum using (_⊎_; inj₁; inj₂)
+import Data.Product.Relation.Binary.Lex.Strict as Lex
+open import Data.Vec as Vec using ([]; _∷_)
+import Data.Vec.Properties as Vecₚ
+open import Data.Vec.Relation.Unary.All as All using (All; []; _∷_)
+open import Data.Vec.Relation.Unary.Any using (Any; here; there)
+open import Function using (_on_; _∘_; _∋_; case_return_of_)
+open import Function.Nary.NonDependent using (congₙ)
+open import Helium.Data.Pseudocode.Properties
+import Induction.WellFounded as Wf
+import Relation.Binary.Construct.On as On
+open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans; cong; cong₂; module ≡-Reasoning)
+open import Relation.Nullary using (yes; no; ¬_)
+open import Relation.Nullary.Decidable.Core using (True; fromWitness; toWitness; toWitnessFalse)
+open import Relation.Nullary.Negation using (contradiction)
+
+open ComMonoidSolver (record
+ { isIdempotentCommutativeMonoid = record
+ { isCommutativeMonoid = ℕₚ.⊔-0-isCommutativeMonoid
+ ; idem = ℕₚ.⊔-idem
+ }
+ })
+ using (_⊕_; _⊜_)
+ renaming (solve to ⊔-solve)
+
+open Code Σ
+
+private
+ variable
+ m n : ℕ
+ Γ Δ : Vec Type m
+ t t′ ret : Type
+
+-- TODO: make argument irrelevant
+castType : Expression Γ t → (t ≡ t′) → Expression Γ t′
+castType e refl = e
+
+cast-pres-assignable : ∀ {e : Expression Γ t} → CanAssign e → (eq : t ≡ t′) → CanAssign (castType e eq)
+cast-pres-assignable e refl = e
+
+cast-pres-stateless : ∀ {e : Expression Γ t} → (eq : t ≡ t′) → ReferencesState (castType e eq) → ReferencesState e
+cast-pres-stateless refl e = e
+
+punchOut⇒insert : ∀ {a} {A : Set a} (xs : Vec A n) {i j : Fin (suc n)} (i≢j : ¬ i ≡ j) x → Vec.lookup xs (Fin.punchOut i≢j) ≡ Vec.lookup (Vec.insert xs i x) j
+punchOut⇒insert xs {i} {j} i≢j x = begin
+ Vec.lookup xs (Fin.punchOut i≢j)
+ ≡˘⟨ cong (λ x → Vec.lookup x _) (Vecₚ.remove-insert xs i x) ⟩
+ Vec.lookup (Vec.remove (Vec.insert xs i x) i) (Fin.punchOut i≢j)
+ ≡⟨ Vecₚ.remove-punchOut (Vec.insert xs i x) i≢j ⟩
+ Vec.lookup (Vec.insert xs i x) j
+ ∎
+ where open ≡-Reasoning
+
+elimAt : ∀ i → Expression (Vec.insert Γ i t′) t → Expression Γ t′ → Expression Γ t
+elimAt′ : ∀ i → All (Expression (Vec.insert Γ i t′)) Δ → Expression Γ t′ → All (Expression Γ) Δ
+
+elimAt i (lit x) e′ = lit x
+elimAt i (state j) e′ = state j
+elimAt i (var j) e′ with i Fin.≟ j
+... | yes refl = castType e′ (sym (Vecₚ.insert-lookup _ i _))
+... | no i≢j = castType (var (Fin.punchOut i≢j)) (punchOut⇒insert _ i≢j _)
+elimAt i (abort e) e′ = abort (elimAt i e e′)
+elimAt i (_≟_ {hasEquality = hasEq} e e₁) e′ = _≟_ {hasEquality = hasEq} (elimAt i e e′) (elimAt i e₁ e′)
+elimAt i (_<?_ {isNumeric = isNum} e e₁) e′ = _<?_ {isNumeric = isNum} (elimAt i e e′) (elimAt i e₁ e′)
+elimAt i (inv e) e′ = elimAt i e e′
+elimAt i (e && e₁) e′ = elimAt i e e′ && elimAt i e₁ e′
+elimAt i (e || e₁) e′ = elimAt i e e′ || elimAt i e₁ e′
+elimAt i (not e) e′ = not (elimAt i e e′)
+elimAt i (e and e₁) e′ = elimAt i e e′ and elimAt i e₁ e′
+elimAt i (e or e₁) e′ = elimAt i e e′ or elimAt i e₁ e′
+elimAt i [ e ] e′ = [ elimAt i e e′ ]
+elimAt i (unbox e) e′ = unbox (elimAt i e e′)
+elimAt i (splice e e₁ e₂) e′ = splice (elimAt i e e′) (elimAt i e₁ e′) (elimAt i e₂ e′)
+elimAt i (cut e e₁) e′ = cut (elimAt i e e′) (elimAt i e₁ e′)
+elimAt i (cast eq e) e′ = cast eq (elimAt i e e′)
+elimAt i (-_ {isNumeric = isNum} e) e′ = -_ {isNumeric = isNum} (elimAt i e e′)
+elimAt i (e + e₁) e′ = elimAt i e e′ + elimAt i e₁ e′
+elimAt i (e * e₁) e′ = elimAt i e e′ * elimAt i e₁ e′
+elimAt i (_^_ {isNumeric = isNum} e x) e′ = _^_ {isNumeric = isNum} (elimAt i e e′) x
+elimAt i (e >> x) e′ = elimAt i e e′ >> x
+elimAt i (rnd e) e′ = rnd (elimAt i e e′)
+elimAt i (fin x e) e′ = fin x (elimAt i e e′)
+elimAt i (asInt e) e′ = asInt (elimAt i e e′)
+elimAt i nil e′ = nil
+elimAt i (cons e e₁) e′ = cons (elimAt i e e′) (elimAt i e₁ e′)
+elimAt i (head e) e′ = head (elimAt i e e′)
+elimAt i (tail e) e′ = tail (elimAt i e e′)
+elimAt i (call f es) e′ = call f (elimAt′ i es e′)
+elimAt i (if e then e₁ else e₂) e′ = if elimAt i e e′ then elimAt i e₁ e′ else elimAt i e₂ e′
+
+elimAt′ i [] e′ = []
+elimAt′ i (e ∷ es) e′ = elimAt i e e′ ∷ elimAt′ i es e′
+
+wknAt : ∀ i → Expression Γ t → Expression (Vec.insert Γ i t′) t
+wknAt′ : ∀ i → All (Expression Γ) Δ → All (Expression (Vec.insert Γ i t′)) Δ
+
+wknAt i (lit x) = lit x
+wknAt i (state j) = state j
+wknAt i (var j) = castType (var (Fin.punchIn i j)) (Vecₚ.insert-punchIn _ i _ j)
+wknAt i (abort e) = abort (wknAt i e)
+wknAt i (_≟_ {hasEquality = hasEq} e e₁) = _≟_ {hasEquality = hasEq} (wknAt i e) (wknAt i e₁)
+wknAt i (_<?_ {isNumeric = isNum} e e₁) = _<?_ {isNumeric = isNum} (wknAt i e) (wknAt i e₁)
+wknAt i (inv e) = inv (wknAt i e)
+wknAt i (e && e₁) = wknAt i e && wknAt i e₁
+wknAt i (e || e₁) = wknAt i e && wknAt i e₁
+wknAt i (not e) = not (wknAt i e)
+wknAt i (e and e₁) = wknAt i e and wknAt i e₁
+wknAt i (e or e₁) = wknAt i e or wknAt i e₁
+wknAt i [ e ] = [ wknAt i e ]
+wknAt i (unbox e) = unbox (wknAt i e)
+wknAt i (splice e e₁ e₂) = splice (wknAt i e) (wknAt i e₁) (wknAt i e₂)
+wknAt i (cut e e₁) = cut (wknAt i e) (wknAt i e₁)
+wknAt i (cast eq e) = cast eq (wknAt i e)
+wknAt i (-_ {isNumeric = isNum} e) = -_ {isNumeric = isNum} (wknAt i e)
+wknAt i (e + e₁) = wknAt i e + wknAt i e₁
+wknAt i (e * e₁) = wknAt i e * wknAt i e₁
+wknAt i (_^_ {isNumeric = isNum} e x) = _^_ {isNumeric = isNum} (wknAt i e) x
+wknAt i (e >> x) = wknAt i e >> x
+wknAt i (rnd e) = rnd (wknAt i e)
+wknAt i (fin x e) = fin x (wknAt i e)
+wknAt i (asInt e) = asInt (wknAt i e)
+wknAt i nil = nil
+wknAt i (cons e e₁) = cons (wknAt i e) (wknAt i e₁)
+wknAt i (head e) = head (wknAt i e)
+wknAt i (tail e) = tail (wknAt i e)
+wknAt i (call f es) = call f (wknAt′ i es)
+wknAt i (if e then e₁ else e₂) = if wknAt i e then wknAt i e₁ else wknAt i e₂
+
+wknAt′ i [] = []
+wknAt′ i (e ∷ es) = wknAt i e ∷ wknAt′ i es
+
+substAt : ∀ i → Expression Γ t → Expression Γ (Vec.lookup Γ i) → Expression Γ t
+substAt′ : ∀ i → All (Expression Γ) Δ → Expression Γ (Vec.lookup Γ i) → All (Expression Γ) Δ
+substAt i (lit x) e′ = lit x
+substAt i (state j) e′ = state j
+substAt i (var j) e′ with i Fin.≟ j
+... | yes refl = e′
+... | no _ = var j
+substAt i (abort e) e′ = abort (substAt i e e′)
+substAt i (_≟_ {hasEquality = hasEq} e e₁) e′ = _≟_ {hasEquality = hasEq} (substAt i e e′) (substAt i e₁ e′)
+substAt i (_<?_ {isNumeric = isNum} e e₁) e′ = _<?_ {isNumeric = isNum} (substAt i e e′) (substAt i e₁ e′)
+substAt i (inv e) e′ = inv (substAt i e e′)
+substAt i (e && e₁) e′ = substAt i e e′ && substAt i e₁ e′
+substAt i (e || e₁) e′ = substAt i e e′ || substAt i e₁ e′
+substAt i (not e) e′ = not (substAt i e e′)
+substAt i (e and e₁) e′ = substAt i e e′ and substAt i e₁ e′
+substAt i (e or e₁) e′ = substAt i e e′ or substAt i e₁ e′
+substAt i [ e ] e′ = [ substAt i e e′ ]
+substAt i (unbox e) e′ = unbox (substAt i e e′)
+substAt i (splice e e₁ e₂) e′ = splice (substAt i e e′) (substAt i e₁ e′) (substAt i e₂ e′)
+substAt i (cut e e₁) e′ = cut (substAt i e e′) (substAt i e₁ e′)
+substAt i (cast eq e) e′ = cast eq (substAt i e e′)
+substAt i (-_ {isNumeric = isNum} e) e′ = -_ {isNumeric = isNum} (substAt i e e′)
+substAt i (e + e₁) e′ = substAt i e e′ + substAt i e₁ e′
+substAt i (e * e₁) e′ = substAt i e e′ * substAt i e₁ e′
+substAt i (_^_ {isNumeric = isNum} e x) e′ = _^_ {isNumeric = isNum} (substAt i e e′) x
+substAt i (e >> x) e′ = substAt i e e′ >> x
+substAt i (rnd e) e′ = rnd (substAt i e e′)
+substAt i (fin x e) e′ = fin x (substAt i e e′)
+substAt i (asInt e) e′ = asInt (substAt i e e′)
+substAt i nil e′ = nil
+substAt i (cons e e₁) e′ = cons (substAt i e e′) (substAt i e₁ e′)
+substAt i (head e) e′ = head (substAt i e e′)
+substAt i (tail e) e′ = tail (substAt i e e′)
+substAt i (call f es) e′ = call f (substAt′ i es e′)
+substAt i (if e then e₁ else e₂) e′ = if substAt i e e′ then substAt i e₁ e′ else substAt i e₂ e′
+
+substAt′ i [] e′ = []
+substAt′ i (e ∷ es) e′ = substAt i e e′ ∷ substAt′ i es e′
+
+updateRef : ∀ {e : Expression Γ t} (ref : CanAssign e) → ¬ ReferencesState e → Expression Γ t → Expression Γ t′ → Expression Γ t′
+updateRef (state i) stateless val e = contradiction (state i) stateless
+updateRef (var i) stateless val e = substAt i e val
+updateRef (abort _) stateless val e = e
+updateRef [ ref ] stateless val e = updateRef ref (stateless ∘ [_]) (unbox val) e
+updateRef (unbox ref) stateless val e = updateRef ref (stateless ∘ unbox) [ val ] e
+updateRef (splice ref ref₁ e₂) stateless val e = updateRef ref₁ (stateless ∘ (λ x → spliceʳ _ x _)) (head (tail (cut val e₂))) (updateRef ref (stateless ∘ (λ x → spliceˡ x _ _)) (head (cut val e₂)) e)
+updateRef (cut ref e₁) stateless val e = updateRef ref (stateless ∘ (λ x → cut x _)) (splice (head val) (head (tail val)) e₁) e
+updateRef (cast eq ref) stateless val e = updateRef ref (stateless ∘ cast eq) (cast (sym eq) val) e
+updateRef nil stateless val e = e
+updateRef (cons ref ref₁) stateless val e = updateRef ref₁ (stateless ∘ (λ x → consʳ _ x)) (tail val) (updateRef ref (stateless ∘ (λ x → consˡ x _)) (head val) e)
+updateRef (head {e = e′} ref) stateless val e = updateRef ref (stateless ∘ head) (cons val (tail e′)) e
+updateRef (tail {e = e′} ref) stateless val e = updateRef ref (stateless ∘ tail) (cons (head e′) val) e
+
+wknAt-pres-assignable : ∀ i {e} → CanAssign e → CanAssign (wknAt {Γ = Γ} {t} {t′} i e)
+wknAt-pres-assignable i (state j) = state j
+wknAt-pres-assignable i (var j) = cast-pres-assignable (var (Fin.punchIn i j)) (Vecₚ.insert-punchIn _ i _ j)
+wknAt-pres-assignable i (abort e) = abort (wknAt i e)
+wknAt-pres-assignable i [ ref ] = [ wknAt-pres-assignable i ref ]
+wknAt-pres-assignable i (unbox ref) = unbox (wknAt-pres-assignable i ref)
+wknAt-pres-assignable i (splice ref ref₁ e₂) = splice (wknAt-pres-assignable i ref) (wknAt-pres-assignable i ref₁) (wknAt i e₂)
+wknAt-pres-assignable i (cut ref e₁) = cut (wknAt-pres-assignable i ref) (wknAt i e₁)
+wknAt-pres-assignable i (cast eq ref) = cast eq (wknAt-pres-assignable i ref)
+wknAt-pres-assignable i nil = nil
+wknAt-pres-assignable i (cons ref ref₁) = cons (wknAt-pres-assignable i ref) (wknAt-pres-assignable i ref₁)
+wknAt-pres-assignable i (head ref) = head (wknAt-pres-assignable i ref)
+wknAt-pres-assignable i (tail ref) = tail (wknAt-pres-assignable i ref)
+
+wknAt-pres-stateless : ∀ i {e} → ReferencesState (wknAt {Γ = Γ} {t} {t′} i e) → ReferencesState e
+wknAt-pres-stateless i {state _} (state j) = state j
+wknAt-pres-stateless i {var j} e = contradiction (cast-pres-stateless {e = var (Fin.punchIn i j)} (Vecₚ.insert-punchIn _ i _ j) e) (λ ())
+wknAt-pres-stateless i {[ _ ]} [ e ] = [ wknAt-pres-stateless i e ]
+wknAt-pres-stateless i {unbox _} (unbox e) = unbox (wknAt-pres-stateless i e)
+wknAt-pres-stateless i {splice _ _ _} (spliceˡ e e₁ e₂) = spliceˡ (wknAt-pres-stateless i e) _ _
+wknAt-pres-stateless i {splice _ _ _} (spliceʳ e e₁ e₂) = spliceʳ _ (wknAt-pres-stateless i e₁) _
+wknAt-pres-stateless i {cut _ _} (cut e e₁) = cut (wknAt-pres-stateless i e) _
+wknAt-pres-stateless i {cast _ _} (cast eq e) = cast eq (wknAt-pres-stateless i e)
+wknAt-pres-stateless i {cons _ _} (consˡ e e₁) = consˡ (wknAt-pres-stateless i e) _
+wknAt-pres-stateless i {cons _ _} (consʳ e e₁) = consʳ _ (wknAt-pres-stateless i e₁)
+wknAt-pres-stateless i {head _} (head e) = head (wknAt-pres-stateless i e)
+wknAt-pres-stateless i {tail _} (tail e) = tail (wknAt-pres-stateless i e)
+
+wknStatementAt : ∀ t i → Statement Γ → Statement (Vec.insert Γ i t)
+wknStatementAt t i (s ∙ s₁) = wknStatementAt t i s ∙ wknStatementAt t i s₁
+wknStatementAt t i skip = skip
+wknStatementAt t i (_≔_ ref {assignable} x) = _≔_ (wknAt i ref) {fromWitness (wknAt-pres-assignable i (toWitness assignable))} (wknAt i x)
+wknStatementAt t i (declare x s) = declare (wknAt i x) (wknStatementAt t (suc i) s)
+wknStatementAt t i (invoke p es) = invoke p (wknAt′ i es)
+wknStatementAt t i (if x then s) = if wknAt i x then wknStatementAt t i s
+wknStatementAt t i (if x then s else s₁) = if wknAt i x then wknStatementAt t i s else wknStatementAt t i s₁
+wknStatementAt t i (for m s) = for m (wknStatementAt t (suc i) s)
+
+subst : Expression Γ t → All (Expression Δ) Γ → Expression Δ t
+subst′ : ∀ {n ts} → All (Expression Γ) {n} ts → All (Expression Δ) Γ → All (Expression Δ) ts
+
+subst (lit x) xs = lit x
+subst (state i) xs = state i
+subst (var i) xs = All.lookup i xs
+subst (abort e) xs = abort (subst e xs)
+subst (_≟_ {hasEquality = hasEq} e e₁) xs = _≟_ {hasEquality = hasEq} (subst e xs) (subst e₁ xs)
+subst (_<?_ {isNumeric = isNum} e e₁) xs = _<?_ {isNumeric = isNum} (subst e xs) (subst e₁ xs)
+subst (inv e) xs = inv (subst e xs)
+subst (e && e₁) xs = subst e xs && subst e₁ xs
+subst (e || e₁) xs = subst e xs || subst e₁ xs
+subst (not e) xs = not (subst e xs)
+subst (e and e₁) xs = subst e xs and subst e₁ xs
+subst (e or e₁) xs = subst e xs or subst e₁ xs
+subst [ e ] xs = [ subst e xs ]
+subst (unbox e) xs = unbox (subst e xs)
+subst (splice e e₁ e₂) xs = splice (subst e xs) (subst e₁ xs) (subst e₂ xs)
+subst (cut e e₁) xs = cut (subst e xs) (subst e₁ xs)
+subst (cast eq e) xs = cast eq (subst e xs)
+subst (-_ {isNumeric = isNum} e) xs = -_ {isNumeric = isNum} (subst e xs)
+subst (e + e₁) xs = subst e xs + subst e₁ xs
+subst (e * e₁) xs = subst e xs * subst e₁ xs
+subst (_^_ {isNumeric = isNum} e x) xs = _^_ {isNumeric = isNum} (subst e xs) x
+subst (e >> x) xs = subst e xs >> x
+subst (rnd e) xs = rnd (subst e xs)
+subst (fin x e) xs = fin x (subst e xs)
+subst (asInt e) xs = asInt (subst e xs)
+subst nil xs = nil
+subst (cons e e₁) xs = cons (subst e xs) (subst e₁ xs)
+subst (head e) xs = head (subst e xs)
+subst (tail e) xs = tail (subst e xs)
+subst (call f es) xs = call f (subst′ es xs)
+subst (if e then e₁ else e₂) xs = if subst e xs then subst e₁ xs else subst e₂ xs
+
+subst′ [] xs = []
+subst′ (e ∷ es) xs = subst e xs ∷ subst′ es xs
+
+callDepth : Expression Γ t → ℕ
+callDepth′ : All (Expression Γ) Δ → ℕ
+stmtCallDepth : Statement Γ → ℕ
+funCallDepth : Function Γ ret → ℕ
+procCallDepth : Procedure Γ → ℕ
+
+callDepth (lit x) = 0
+callDepth (state i) = 0
+callDepth (var i) = 0
+callDepth (abort e) = callDepth e
+callDepth (e ≟ e₁) = callDepth e ⊔ callDepth e₁
+callDepth (e <? e₁) = callDepth e ⊔ callDepth e₁
+callDepth (inv e) = callDepth e
+callDepth (e && e₁) = callDepth e ⊔ callDepth e₁
+callDepth (e || e₁) = callDepth e ⊔ callDepth e₁
+callDepth (not e) = callDepth e
+callDepth (e and e₁) = callDepth e ⊔ callDepth e₁
+callDepth (e or e₁) = callDepth e ⊔ callDepth e₁
+callDepth [ e ] = callDepth e
+callDepth (unbox e) = callDepth e
+callDepth (splice e e₁ e₂) = callDepth e ⊔ callDepth e₁ ⊔ callDepth e₂
+callDepth (cut e e₁) = callDepth e ⊔ callDepth e₁
+callDepth (cast eq e) = callDepth e
+callDepth (- e) = callDepth e
+callDepth (e + e₁) = callDepth e ⊔ callDepth e₁
+callDepth (e * e₁) = callDepth e ⊔ callDepth e₁
+callDepth (e ^ x) = callDepth e
+callDepth (e >> x) = callDepth e
+callDepth (rnd e) = callDepth e
+callDepth (fin x e) = callDepth e
+callDepth (asInt e) = callDepth e
+callDepth nil = 0
+callDepth (cons e e₁) = callDepth e ⊔ callDepth e₁
+callDepth (head e) = callDepth e
+callDepth (tail e) = callDepth e
+callDepth (call f es) = suc (funCallDepth f) ⊔ callDepth′ es
+callDepth (if e then e₁ else e₂) = callDepth e ⊔ callDepth e₁ ⊔ callDepth e₂
+
+callDepth′ [] = 0
+callDepth′ (e ∷ es) = callDepth e ⊔ callDepth′ es
+
+stmtCallDepth (s ∙ s₁) = stmtCallDepth s ⊔ stmtCallDepth s₁
+stmtCallDepth skip = 0
+stmtCallDepth (ref ≔ x) = callDepth ref ⊔ callDepth x
+stmtCallDepth (declare x s) = callDepth x ⊔ stmtCallDepth s
+stmtCallDepth (invoke p es) = procCallDepth p ⊔ callDepth′ es
+stmtCallDepth (if x then s) = callDepth x ⊔ stmtCallDepth s
+stmtCallDepth (if x then s else s₁) = callDepth x ⊔ stmtCallDepth s ⊔ stmtCallDepth s₁
+stmtCallDepth (for m s) = stmtCallDepth s
+
+funCallDepth (s ∙return x) = stmtCallDepth s ⊔ callDepth x
+funCallDepth (declare x f) = funCallDepth f ⊔ callDepth x
+
+procCallDepth (x ∙end) = stmtCallDepth x
+
+open ℕₚ.≤-Reasoning
+
+castType-pres-callDepth : ∀ (e : Expression Γ t) (eq : t ≡ t′) → callDepth (castType e eq) ≡ callDepth e
+castType-pres-callDepth e refl = refl
+
+elimAt-pres-callDepth : ∀ i (e : Expression (Vec.insert Γ i t′) t) (e′ : Expression Γ t′) → callDepth (elimAt i e e′) ℕ.≤ callDepth e′ ⊔ callDepth e
+elimAt′-pres-callDepth : ∀ i (es : All (Expression (Vec.insert Γ i t′)) Δ) (e′ : Expression Γ t′) → callDepth′ (elimAt′ i es e′) ℕ.≤ callDepth e′ ⊔ callDepth′ es
+
+elimAt-pres-callDepth i (lit x) e′ = ℕₚ.m≤n⊔m (callDepth e′) 0
+elimAt-pres-callDepth i (state j) e′ = ℕₚ.m≤n⊔m (callDepth e′) 0
+elimAt-pres-callDepth i (var j) e′ with i Fin.≟ j
+... | yes refl = begin
+ callDepth (castType e′ (sym (Vecₚ.insert-lookup _ i _)))
+ ≡⟨ castType-pres-callDepth e′ (sym (Vecₚ.insert-lookup _ i _)) ⟩
+ callDepth e′
+ ≤⟨ ℕₚ.m≤m⊔n (callDepth e′) 0 ⟩
+ callDepth e′ ⊔ 0
+ ∎
+elimAt-pres-callDepth {Γ = Γ} i (var j) e′ | no i≢j = begin
+ callDepth (castType (var {Γ = Γ} (Fin.punchOut i≢j)) (punchOut⇒insert Γ i≢j _))
+ ≡⟨ castType-pres-callDepth (var {Γ = Γ} (Fin.punchOut i≢j)) (punchOut⇒insert Γ i≢j _) ⟩
+ 0
+ ≤⟨ ℕ.z≤n ⟩
+ callDepth e′ ⊔ 0
+ ∎
+elimAt-pres-callDepth i (abort e) e′ = elimAt-pres-callDepth i e e′
+elimAt-pres-callDepth i (e ≟ e₁) e′ = begin
+ callDepth (elimAt i e e′) ⊔ callDepth (elimAt i e₁ e′)
+ ≤⟨ ℕₚ.⊔-mono-≤ (elimAt-pres-callDepth i e e′) (elimAt-pres-callDepth i e₁ e′) ⟩
+ callDepth e′ ⊔ callDepth e ⊔ (callDepth e′ ⊔ callDepth e₁)
+ ≡⟨ ⊔-solve 3 (λ m n o → (m ⊕ n) ⊕ (m ⊕ o) ⊜ m ⊕ (n ⊕ o)) refl (callDepth e′) (callDepth e) (callDepth e₁) ⟩
+ callDepth e′ ⊔ (callDepth e ⊔ callDepth e₁)
+ ∎
+elimAt-pres-callDepth i (e <? e₁) e′ = begin
+ callDepth (elimAt i e e′) ⊔ callDepth (elimAt i e₁ e′)
+ ≤⟨ ℕₚ.⊔-mono-≤ (elimAt-pres-callDepth i e e′) (elimAt-pres-callDepth i e₁ e′) ⟩
+ callDepth e′ ⊔ callDepth e ⊔ (callDepth e′ ⊔ callDepth e₁)
+ ≡⟨ ⊔-solve 3 (λ m n o → (m ⊕ n) ⊕ (m ⊕ o) ⊜ m ⊕ (n ⊕ o)) refl (callDepth e′) (callDepth e) (callDepth e₁) ⟩
+ callDepth e′ ⊔ (callDepth e ⊔ callDepth e₁)
+ ∎
+elimAt-pres-callDepth i (inv e) e′ = elimAt-pres-callDepth i e e′
+elimAt-pres-callDepth i (e && e₁) e′ = begin
+ callDepth (elimAt i e e′) ⊔ callDepth (elimAt i e₁ e′)
+ ≤⟨ ℕₚ.⊔-mono-≤ (elimAt-pres-callDepth i e e′) (elimAt-pres-callDepth i e₁ e′) ⟩
+ callDepth e′ ⊔ callDepth e ⊔ (callDepth e′ ⊔ callDepth e₁)
+ ≡⟨ ⊔-solve 3 (λ m n o → (m ⊕ n) ⊕ (m ⊕ o) ⊜ m ⊕ (n ⊕ o)) refl (callDepth e′) (callDepth e) (callDepth e₁) ⟩
+ callDepth e′ ⊔ (callDepth e ⊔ callDepth e₁)
+ ∎
+elimAt-pres-callDepth i (e || e₁) e′ = begin
+ callDepth (elimAt i e e′) ⊔ callDepth (elimAt i e₁ e′)
+ ≤⟨ ℕₚ.⊔-mono-≤ (elimAt-pres-callDepth i e e′) (elimAt-pres-callDepth i e₁ e′) ⟩
+ callDepth e′ ⊔ callDepth e ⊔ (callDepth e′ ⊔ callDepth e₁)
+ ≡⟨ ⊔-solve 3 (λ m n o → (m ⊕ n) ⊕ (m ⊕ o) ⊜ m ⊕ (n ⊕ o)) refl (callDepth e′) (callDepth e) (callDepth e₁) ⟩
+ callDepth e′ ⊔ (callDepth e ⊔ callDepth e₁)
+ ∎
+elimAt-pres-callDepth i (not e) e′ = elimAt-pres-callDepth i e e′
+elimAt-pres-callDepth i (e and e₁) e′ = begin
+ callDepth (elimAt i e e′) ⊔ callDepth (elimAt i e₁ e′)
+ ≤⟨ ℕₚ.⊔-mono-≤ (elimAt-pres-callDepth i e e′) (elimAt-pres-callDepth i e₁ e′) ⟩
+ callDepth e′ ⊔ callDepth e ⊔ (callDepth e′ ⊔ callDepth e₁)
+ ≡⟨ ⊔-solve 3 (λ m n o → (m ⊕ n) ⊕ (m ⊕ o) ⊜ m ⊕ (n ⊕ o)) refl (callDepth e′) (callDepth e) (callDepth e₁) ⟩
+ callDepth e′ ⊔ (callDepth e ⊔ callDepth e₁)
+ ∎
+elimAt-pres-callDepth i (e or e₁) e′ = begin
+ callDepth (elimAt i e e′) ⊔ callDepth (elimAt i e₁ e′)
+ ≤⟨ ℕₚ.⊔-mono-≤ (elimAt-pres-callDepth i e e′) (elimAt-pres-callDepth i e₁ e′) ⟩
+ callDepth e′ ⊔ callDepth e ⊔ (callDepth e′ ⊔ callDepth e₁)
+ ≡⟨ ⊔-solve 3 (λ m n o → (m ⊕ n) ⊕ (m ⊕ o) ⊜ m ⊕ (n ⊕ o)) refl (callDepth e′) (callDepth e) (callDepth e₁) ⟩
+ callDepth e′ ⊔ (callDepth e ⊔ callDepth e₁)
+ ∎
+elimAt-pres-callDepth i [ e ] e′ = elimAt-pres-callDepth i e e′
+elimAt-pres-callDepth i (unbox e) e′ = elimAt-pres-callDepth i e e′
+elimAt-pres-callDepth i (splice e e₁ e₂) e′ = begin
+ callDepth (elimAt i e e′) ⊔ callDepth (elimAt i e₁ e′) ⊔ callDepth (elimAt i e₂ e′)
+ ≤⟨ ℕₚ.⊔-mono-≤ (ℕₚ.⊔-mono-≤ (elimAt-pres-callDepth i e e′) (elimAt-pres-callDepth i e₁ e′)) (elimAt-pres-callDepth i e₂ e′) ⟩
+ callDepth e′ ⊔ callDepth e ⊔ (callDepth e′ ⊔ callDepth e₁) ⊔ (callDepth e′ ⊔ callDepth e₂)
+ ≡⟨ ⊔-solve 4 (λ m n o p → (((m ⊕ n) ⊕ (m ⊕ o)) ⊕ (m ⊕ p)) ⊜ (m ⊕ ((n ⊕ o) ⊕ p))) refl (callDepth e′) (callDepth e) (callDepth e₁) (callDepth e₂) ⟩
+ callDepth e′ ⊔ (callDepth e ⊔ callDepth e₁ ⊔ callDepth e₂)
+ ∎
+elimAt-pres-callDepth i (cut e e₁) e′ = begin
+ callDepth (elimAt i e e′) ⊔ callDepth (elimAt i e₁ e′)
+ ≤⟨ ℕₚ.⊔-mono-≤ (elimAt-pres-callDepth i e e′) (elimAt-pres-callDepth i e₁ e′) ⟩
+ callDepth e′ ⊔ callDepth e ⊔ (callDepth e′ ⊔ callDepth e₁)
+ ≡⟨ ⊔-solve 3 (λ m n o → (m ⊕ n) ⊕ (m ⊕ o) ⊜ m ⊕ (n ⊕ o)) refl (callDepth e′) (callDepth e) (callDepth e₁) ⟩
+ callDepth e′ ⊔ (callDepth e ⊔ callDepth e₁)
+ ∎
+elimAt-pres-callDepth i (cast eq e) e′ = elimAt-pres-callDepth i e e′
+elimAt-pres-callDepth i (- e) e′ = elimAt-pres-callDepth i e e′
+elimAt-pres-callDepth i (e + e₁) e′ = begin
+ callDepth (elimAt i e e′) ⊔ callDepth (elimAt i e₁ e′)
+ ≤⟨ ℕₚ.⊔-mono-≤ (elimAt-pres-callDepth i e e′) (elimAt-pres-callDepth i e₁ e′) ⟩
+ callDepth e′ ⊔ callDepth e ⊔ (callDepth e′ ⊔ callDepth e₁)
+ ≡⟨ ⊔-solve 3 (λ m n o → (m ⊕ n) ⊕ (m ⊕ o) ⊜ m ⊕ (n ⊕ o)) refl (callDepth e′) (callDepth e) (callDepth e₁) ⟩
+ callDepth e′ ⊔ (callDepth e ⊔ callDepth e₁)
+ ∎
+elimAt-pres-callDepth i (e * e₁) e′ = begin
+ callDepth (elimAt i e e′) ⊔ callDepth (elimAt i e₁ e′)
+ ≤⟨ ℕₚ.⊔-mono-≤ (elimAt-pres-callDepth i e e′) (elimAt-pres-callDepth i e₁ e′) ⟩
+ callDepth e′ ⊔ callDepth e ⊔ (callDepth e′ ⊔ callDepth e₁)
+ ≡⟨ ⊔-solve 3 (λ m n o → (m ⊕ n) ⊕ (m ⊕ o) ⊜ m ⊕ (n ⊕ o)) refl (callDepth e′) (callDepth e) (callDepth e₁) ⟩
+ callDepth e′ ⊔ (callDepth e ⊔ callDepth e₁)
+ ∎
+elimAt-pres-callDepth i (e ^ x) e′ = elimAt-pres-callDepth i e e′
+elimAt-pres-callDepth i (e >> x) e′ = elimAt-pres-callDepth i e e′
+elimAt-pres-callDepth i (rnd e) e′ = elimAt-pres-callDepth i e e′
+elimAt-pres-callDepth i (fin x e) e′ = elimAt-pres-callDepth i e e′
+elimAt-pres-callDepth i (asInt e) e′ = elimAt-pres-callDepth i e e′
+elimAt-pres-callDepth i nil e′ = ℕₚ.m≤n⊔m (callDepth e′) 0
+elimAt-pres-callDepth i (cons e e₁) e′ = begin
+ callDepth (elimAt i e e′) ⊔ callDepth (elimAt i e₁ e′)
+ ≤⟨ ℕₚ.⊔-mono-≤ (elimAt-pres-callDepth i e e′) (elimAt-pres-callDepth i e₁ e′) ⟩
+ callDepth e′ ⊔ callDepth e ⊔ (callDepth e′ ⊔ callDepth e₁)
+ ≡⟨ ⊔-solve 3 (λ m n o → (m ⊕ n) ⊕ (m ⊕ o) ⊜ m ⊕ (n ⊕ o)) refl (callDepth e′) (callDepth e) (callDepth e₁) ⟩
+ callDepth e′ ⊔ (callDepth e ⊔ callDepth e₁)
+ ∎
+elimAt-pres-callDepth i (head e) e′ = elimAt-pres-callDepth i e e′
+elimAt-pres-callDepth i (tail e) e′ = elimAt-pres-callDepth i e e′
+elimAt-pres-callDepth i (call f es) e′ = begin
+ suc (funCallDepth f) ⊔ callDepth′ (elimAt′ i es e′)
+ ≤⟨ ℕₚ.⊔-monoʳ-≤ (suc (funCallDepth f)) (elimAt′-pres-callDepth i es e′) ⟩
+ suc (funCallDepth f) ⊔ (callDepth e′ ⊔ callDepth′ es)
+ ≡⟨ ⊔-solve 3 (λ a b c → b ⊕ (a ⊕ c) ⊜ a ⊕ (b ⊕ c)) refl (callDepth e′) (suc (funCallDepth f)) (callDepth′ es) ⟩
+ callDepth e′ ⊔ (suc (funCallDepth f) ⊔ callDepth′ es)
+ ∎
+elimAt-pres-callDepth i (if e then e₁ else e₂) e′ = begin
+ callDepth (elimAt i e e′) ⊔ callDepth (elimAt i e₁ e′) ⊔ callDepth (elimAt i e₂ e′)
+ ≤⟨ ℕₚ.⊔-mono-≤ (ℕₚ.⊔-mono-≤ (elimAt-pres-callDepth i e e′) (elimAt-pres-callDepth i e₁ e′)) (elimAt-pres-callDepth i e₂ e′) ⟩
+ callDepth e′ ⊔ callDepth e ⊔ (callDepth e′ ⊔ callDepth e₁) ⊔ (callDepth e′ ⊔ callDepth e₂)
+ ≡⟨ ⊔-solve 4 (λ m n o p → (((m ⊕ n) ⊕ (m ⊕ o)) ⊕ (m ⊕ p)) ⊜ (m ⊕ ((n ⊕ o) ⊕ p))) refl (callDepth e′) (callDepth e) (callDepth e₁) (callDepth e₂) ⟩
+ callDepth e′ ⊔ (callDepth e ⊔ callDepth e₁ ⊔ callDepth e₂)
+ ∎
+
+elimAt′-pres-callDepth i [] e′ = ℕₚ.m≤n⊔m (callDepth e′) 0
+elimAt′-pres-callDepth i (e ∷ es) e′ = begin
+ callDepth (elimAt i e e′) ⊔ callDepth′ (elimAt′ i es e′)
+ ≤⟨ ℕₚ.⊔-mono-≤ (elimAt-pres-callDepth i e e′) (elimAt′-pres-callDepth i es e′) ⟩
+ callDepth e′ ⊔ callDepth e ⊔ (callDepth e′ ⊔ callDepth′ es)
+ ≡⟨ ⊔-solve 3 (λ a b c → ((a ⊕ b) ⊕ (a ⊕ c)) ⊜ (a ⊕ (b ⊕ c))) refl (callDepth e′) (callDepth e) (callDepth′ es) ⟩
+ callDepth e′ ⊔ (callDepth e ⊔ callDepth′ es)
+ ∎
+
+wknAt-pres-callDepth : ∀ i (e : Expression Γ t) → callDepth (wknAt {t′ = t′} i e) ≡ callDepth e
+wknAt′-pres-callDepth : ∀ i (es : All (Expression Γ) Δ) → callDepth′ (wknAt′ {t′ = t′} i es) ≡ callDepth′ es
+
+wknAt-pres-callDepth i (Code.lit x) = refl
+wknAt-pres-callDepth i (Code.state j) = refl
+wknAt-pres-callDepth {Γ = Γ} i (Code.var j) = castType-pres-callDepth (var {Γ = Vec.insert Γ i _} (Fin.punchIn i j)) (Vecₚ.insert-punchIn Γ i _ j)
+wknAt-pres-callDepth i (Code.abort e) = wknAt-pres-callDepth i e
+wknAt-pres-callDepth i (e Code.≟ e₁) = cong₂ _⊔_ (wknAt-pres-callDepth i e) (wknAt-pres-callDepth i e₁)
+wknAt-pres-callDepth i (e Code.<? e₁) = cong₂ _⊔_ (wknAt-pres-callDepth i e) (wknAt-pres-callDepth i e₁)
+wknAt-pres-callDepth i (Code.inv e) = wknAt-pres-callDepth i e
+wknAt-pres-callDepth i (e Code.&& e₁) = cong₂ _⊔_ (wknAt-pres-callDepth i e) (wknAt-pres-callDepth i e₁)
+wknAt-pres-callDepth i (e Code.|| e₁) = cong₂ _⊔_ (wknAt-pres-callDepth i e) (wknAt-pres-callDepth i e₁)
+wknAt-pres-callDepth i (Code.not e) = wknAt-pres-callDepth i e
+wknAt-pres-callDepth i (e Code.and e₁) = cong₂ _⊔_ (wknAt-pres-callDepth i e) (wknAt-pres-callDepth i e₁)
+wknAt-pres-callDepth i (e Code.or e₁) = cong₂ _⊔_ (wknAt-pres-callDepth i e) (wknAt-pres-callDepth i e₁)
+wknAt-pres-callDepth i Code.[ e ] = wknAt-pres-callDepth i e
+wknAt-pres-callDepth i (Code.unbox e) = wknAt-pres-callDepth i e
+wknAt-pres-callDepth i (Code.splice e e₁ e₂) = congₙ 3 (λ m n o → m ⊔ n ⊔ o) (wknAt-pres-callDepth i e) (wknAt-pres-callDepth i e₁) (wknAt-pres-callDepth i e₂)
+wknAt-pres-callDepth i (Code.cut e e₁) = cong₂ _⊔_ (wknAt-pres-callDepth i e) (wknAt-pres-callDepth i e₁)
+wknAt-pres-callDepth i (Code.cast eq e) = wknAt-pres-callDepth i e
+wknAt-pres-callDepth i (Code.- e) = wknAt-pres-callDepth i e
+wknAt-pres-callDepth i (e Code.+ e₁) = cong₂ _⊔_ (wknAt-pres-callDepth i e) (wknAt-pres-callDepth i e₁)
+wknAt-pres-callDepth i (e Code.* e₁) = cong₂ _⊔_ (wknAt-pres-callDepth i e) (wknAt-pres-callDepth i e₁)
+wknAt-pres-callDepth i (e Code.^ x) = wknAt-pres-callDepth i e
+wknAt-pres-callDepth i (e Code.>> x) = wknAt-pres-callDepth i e
+wknAt-pres-callDepth i (Code.rnd e) = wknAt-pres-callDepth i e
+wknAt-pres-callDepth i (Code.fin x e) = wknAt-pres-callDepth i e
+wknAt-pres-callDepth i (Code.asInt e) = wknAt-pres-callDepth i e
+wknAt-pres-callDepth i Code.nil = refl
+wknAt-pres-callDepth i (Code.cons e e₁) = cong₂ _⊔_ (wknAt-pres-callDepth i e) (wknAt-pres-callDepth i e₁)
+wknAt-pres-callDepth i (Code.head e) = wknAt-pres-callDepth i e
+wknAt-pres-callDepth i (Code.tail e) = wknAt-pres-callDepth i e
+wknAt-pres-callDepth i (Code.call f es) = cong (suc (funCallDepth f) ⊔_) (wknAt′-pres-callDepth i es)
+wknAt-pres-callDepth i (Code.if e then e₁ else e₂) = congₙ 3 (λ m n o → m ⊔ n ⊔ o) (wknAt-pres-callDepth i e) (wknAt-pres-callDepth i e₁) (wknAt-pres-callDepth i e₂)
+
+wknAt′-pres-callDepth i [] = refl
+wknAt′-pres-callDepth i (e ∷ es) = cong₂ _⊔_ (wknAt-pres-callDepth i e) (wknAt′-pres-callDepth i es)
+
+substAt-pres-callDepth : ∀ i (e : Expression Γ t) e′ → callDepth (substAt i e e′) ℕ.≤ callDepth e′ ⊔ callDepth e
+substAt-pres-callDepth i (Code.lit x) e′ = ℕₚ.m≤n⊔m (callDepth e′) 0
+substAt-pres-callDepth i (Code.state j) e′ = ℕₚ.m≤n⊔m (callDepth e′) 0
+substAt-pres-callDepth i (Code.var j) e′ with i Fin.≟ j
+... | yes refl = ℕₚ.m≤m⊔n (callDepth e′) 0
+... | no _ = ℕₚ.m≤n⊔m (callDepth e′) 0
+substAt-pres-callDepth i (Code.abort e) e′ = substAt-pres-callDepth i e e′
+substAt-pres-callDepth i (e Code.≟ e₁) e′ = begin
+ callDepth (substAt i e e′) ⊔ callDepth (substAt i e₁ e′)
+ ≤⟨ ℕₚ.⊔-mono-≤ (substAt-pres-callDepth i e e′) (substAt-pres-callDepth i e₁ e′) ⟩
+ callDepth e′ ⊔ callDepth e ⊔ (callDepth e′ ⊔ callDepth e₁)
+ ≡⟨ ⊔-solve 3 (λ a b c → (a ⊕ b) ⊕ (a ⊕ c) ⊜ a ⊕ (b ⊕ c)) refl (callDepth e′) (callDepth e) (callDepth e₁) ⟩
+ callDepth e′ ⊔ (callDepth e ⊔ callDepth e₁)
+ ∎
+substAt-pres-callDepth i (e Code.<? e₁) e′ = begin
+ callDepth (substAt i e e′) ⊔ callDepth (substAt i e₁ e′)
+ ≤⟨ ℕₚ.⊔-mono-≤ (substAt-pres-callDepth i e e′) (substAt-pres-callDepth i e₁ e′) ⟩
+ callDepth e′ ⊔ callDepth e ⊔ (callDepth e′ ⊔ callDepth e₁)
+ ≡⟨ ⊔-solve 3 (λ a b c → (a ⊕ b) ⊕ (a ⊕ c) ⊜ a ⊕ (b ⊕ c)) refl (callDepth e′) (callDepth e) (callDepth e₁) ⟩
+ callDepth e′ ⊔ (callDepth e ⊔ callDepth e₁)
+ ∎
+substAt-pres-callDepth i (Code.inv e) e′ = substAt-pres-callDepth i e e′
+substAt-pres-callDepth i (e Code.&& e₁) e′ = begin
+ callDepth (substAt i e e′) ⊔ callDepth (substAt i e₁ e′)
+ ≤⟨ ℕₚ.⊔-mono-≤ (substAt-pres-callDepth i e e′) (substAt-pres-callDepth i e₁ e′) ⟩
+ callDepth e′ ⊔ callDepth e ⊔ (callDepth e′ ⊔ callDepth e₁)
+ ≡⟨ ⊔-solve 3 (λ a b c → (a ⊕ b) ⊕ (a ⊕ c) ⊜ a ⊕ (b ⊕ c)) refl (callDepth e′) (callDepth e) (callDepth e₁) ⟩
+ callDepth e′ ⊔ (callDepth e ⊔ callDepth e₁)
+ ∎
+substAt-pres-callDepth i (e Code.|| e₁) e′ = begin
+ callDepth (substAt i e e′) ⊔ callDepth (substAt i e₁ e′)
+ ≤⟨ ℕₚ.⊔-mono-≤ (substAt-pres-callDepth i e e′) (substAt-pres-callDepth i e₁ e′) ⟩
+ callDepth e′ ⊔ callDepth e ⊔ (callDepth e′ ⊔ callDepth e₁)
+ ≡⟨ ⊔-solve 3 (λ a b c → (a ⊕ b) ⊕ (a ⊕ c) ⊜ a ⊕ (b ⊕ c)) refl (callDepth e′) (callDepth e) (callDepth e₁) ⟩
+ callDepth e′ ⊔ (callDepth e ⊔ callDepth e₁)
+ ∎
+substAt-pres-callDepth i (Code.not e) e′ = substAt-pres-callDepth i e e′
+substAt-pres-callDepth i (e Code.and e₁) e′ = begin
+ callDepth (substAt i e e′) ⊔ callDepth (substAt i e₁ e′)
+ ≤⟨ ℕₚ.⊔-mono-≤ (substAt-pres-callDepth i e e′) (substAt-pres-callDepth i e₁ e′) ⟩
+ callDepth e′ ⊔ callDepth e ⊔ (callDepth e′ ⊔ callDepth e₁)
+ ≡⟨ ⊔-solve 3 (λ a b c → (a ⊕ b) ⊕ (a ⊕ c) ⊜ a ⊕ (b ⊕ c)) refl (callDepth e′) (callDepth e) (callDepth e₁) ⟩
+ callDepth e′ ⊔ (callDepth e ⊔ callDepth e₁)
+ ∎
+substAt-pres-callDepth i (e Code.or e₁) e′ = begin
+ callDepth (substAt i e e′) ⊔ callDepth (substAt i e₁ e′)
+ ≤⟨ ℕₚ.⊔-mono-≤ (substAt-pres-callDepth i e e′) (substAt-pres-callDepth i e₁ e′) ⟩
+ callDepth e′ ⊔ callDepth e ⊔ (callDepth e′ ⊔ callDepth e₁)
+ ≡⟨ ⊔-solve 3 (λ a b c → (a ⊕ b) ⊕ (a ⊕ c) ⊜ a ⊕ (b ⊕ c)) refl (callDepth e′) (callDepth e) (callDepth e₁) ⟩
+ callDepth e′ ⊔ (callDepth e ⊔ callDepth e₁)
+ ∎
+substAt-pres-callDepth i Code.[ e ] e′ = substAt-pres-callDepth i e e′
+substAt-pres-callDepth i (Code.unbox e) e′ = substAt-pres-callDepth i e e′
+substAt-pres-callDepth i (Code.splice e e₁ e₂) e′ = begin
+ callDepth (substAt i e e′) ⊔ callDepth (substAt i e₁ e′) ⊔ callDepth (substAt i e₂ e′)
+ ≤⟨ ℕₚ.⊔-mono-≤ (ℕₚ.⊔-mono-≤ (substAt-pres-callDepth i e e′) (substAt-pres-callDepth i e₁ e′)) (substAt-pres-callDepth i e₂ e′) ⟩
+ callDepth e′ ⊔ callDepth e ⊔ (callDepth e′ ⊔ callDepth e₁) ⊔ (callDepth e′ ⊔ callDepth e₂)
+ ≡⟨ ⊔-solve 4 (λ a b c d → ((a ⊕ b) ⊕ (a ⊕ c)) ⊕ (a ⊕ d) ⊜ a ⊕ ((b ⊕ c) ⊕ d)) refl (callDepth e′) (callDepth e) (callDepth e₁) (callDepth e₂) ⟩
+ callDepth e′ ⊔ (callDepth e ⊔ callDepth e₁ ⊔ callDepth e₂)
+ ∎
+substAt-pres-callDepth i (Code.cut e e₁) e′ = begin
+ callDepth (substAt i e e′) ⊔ callDepth (substAt i e₁ e′)
+ ≤⟨ ℕₚ.⊔-mono-≤ (substAt-pres-callDepth i e e′) (substAt-pres-callDepth i e₁ e′) ⟩
+ callDepth e′ ⊔ callDepth e ⊔ (callDepth e′ ⊔ callDepth e₁)
+ ≡⟨ ⊔-solve 3 (λ a b c → (a ⊕ b) ⊕ (a ⊕ c) ⊜ a ⊕ (b ⊕ c)) refl (callDepth e′) (callDepth e) (callDepth e₁) ⟩
+ callDepth e′ ⊔ (callDepth e ⊔ callDepth e₁)
+ ∎
+substAt-pres-callDepth i (Code.cast eq e) e′ = substAt-pres-callDepth i e e′
+substAt-pres-callDepth i (Code.- e) e′ = substAt-pres-callDepth i e e′
+substAt-pres-callDepth i (e Code.+ e₁) e′ = begin
+ callDepth (substAt i e e′) ⊔ callDepth (substAt i e₁ e′)
+ ≤⟨ ℕₚ.⊔-mono-≤ (substAt-pres-callDepth i e e′) (substAt-pres-callDepth i e₁ e′) ⟩
+ callDepth e′ ⊔ callDepth e ⊔ (callDepth e′ ⊔ callDepth e₁)
+ ≡⟨ ⊔-solve 3 (λ a b c → (a ⊕ b) ⊕ (a ⊕ c) ⊜ a ⊕ (b ⊕ c)) refl (callDepth e′) (callDepth e) (callDepth e₁) ⟩
+ callDepth e′ ⊔ (callDepth e ⊔ callDepth e₁)
+ ∎
+substAt-pres-callDepth i (e Code.* e₁) e′ = begin
+ callDepth (substAt i e e′) ⊔ callDepth (substAt i e₁ e′)
+ ≤⟨ ℕₚ.⊔-mono-≤ (substAt-pres-callDepth i e e′) (substAt-pres-callDepth i e₁ e′) ⟩
+ callDepth e′ ⊔ callDepth e ⊔ (callDepth e′ ⊔ callDepth e₁)
+ ≡⟨ ⊔-solve 3 (λ a b c → (a ⊕ b) ⊕ (a ⊕ c) ⊜ a ⊕ (b ⊕ c)) refl (callDepth e′) (callDepth e) (callDepth e₁) ⟩
+ callDepth e′ ⊔ (callDepth e ⊔ callDepth e₁)
+ ∎
+substAt-pres-callDepth i (e Code.^ x) e′ = substAt-pres-callDepth i e e′
+substAt-pres-callDepth i (e Code.>> x) e′ = substAt-pres-callDepth i e e′
+substAt-pres-callDepth i (Code.rnd e) e′ = substAt-pres-callDepth i e e′
+substAt-pres-callDepth i (Code.fin x e) e′ = substAt-pres-callDepth i e e′
+substAt-pres-callDepth i (Code.asInt e) e′ = substAt-pres-callDepth i e e′
+substAt-pres-callDepth i Code.nil e′ = ℕₚ.m≤n⊔m (callDepth e′) 0
+substAt-pres-callDepth i (Code.cons e e₁) e′ = begin
+ callDepth (substAt i e e′) ⊔ callDepth (substAt i e₁ e′)
+ ≤⟨ ℕₚ.⊔-mono-≤ (substAt-pres-callDepth i e e′) (substAt-pres-callDepth i e₁ e′) ⟩
+ callDepth e′ ⊔ callDepth e ⊔ (callDepth e′ ⊔ callDepth e₁)
+ ≡⟨ ⊔-solve 3 (λ a b c → (a ⊕ b) ⊕ (a ⊕ c) ⊜ a ⊕ (b ⊕ c)) refl (callDepth e′) (callDepth e) (callDepth e₁) ⟩
+ callDepth e′ ⊔ (callDepth e ⊔ callDepth e₁)
+ ∎
+substAt-pres-callDepth i (Code.head e) e′ = substAt-pres-callDepth i e e′
+substAt-pres-callDepth i (Code.tail e) e′ = substAt-pres-callDepth i e e′
+substAt-pres-callDepth i (Code.call f es) e′ = begin
+ suc (funCallDepth f) ⊔ callDepth′ (substAt′ i es e′)
+ ≤⟨ ℕₚ.⊔-monoʳ-≤ (suc (funCallDepth f)) (helper es) ⟩
+ suc (funCallDepth f) ⊔ (callDepth e′ ⊔ callDepth′ es)
+ ≡⟨ ⊔-solve 3 (λ a b c → b ⊕ (a ⊕ c) ⊜ a ⊕ (b ⊕ c)) refl (callDepth e′) (suc (funCallDepth f)) (callDepth′ es) ⟩
+ callDepth e′ ⊔ (suc (funCallDepth f) ⊔ callDepth′ es)
+ ∎
+ where
+ helper : ∀ {n ts} (es : All _ {n} ts) → callDepth′ (substAt′ i es e′) ℕ.≤ callDepth e′ ⊔ callDepth′ es
+ helper [] = ℕₚ.m≤n⊔m (callDepth e′) 0
+ helper (e ∷ es) = begin
+ callDepth (substAt i e e′) ⊔ callDepth′ (substAt′ i es e′)
+ ≤⟨ ℕₚ.⊔-mono-≤ (substAt-pres-callDepth i e e′) (helper es) ⟩
+ callDepth e′ ⊔ callDepth e ⊔ (callDepth e′ ⊔ callDepth′ es)
+ ≡⟨ ⊔-solve 3 (λ a b c → ((a ⊕ b) ⊕ (a ⊕ c)) ⊜ (a ⊕ (b ⊕ c))) refl (callDepth e′) (callDepth e) (callDepth′ es) ⟩
+ callDepth e′ ⊔ (callDepth e ⊔ callDepth′ es)
+ ∎
+substAt-pres-callDepth i (Code.if e then e₁ else e₂) e′ = begin
+ callDepth (substAt i e e′) ⊔ callDepth (substAt i e₁ e′) ⊔ callDepth (substAt i e₂ e′)
+ ≤⟨ ℕₚ.⊔-mono-≤ (ℕₚ.⊔-mono-≤ (substAt-pres-callDepth i e e′) (substAt-pres-callDepth i e₁ e′)) (substAt-pres-callDepth i e₂ e′) ⟩
+ callDepth e′ ⊔ callDepth e ⊔ (callDepth e′ ⊔ callDepth e₁) ⊔ (callDepth e′ ⊔ callDepth e₂)
+ ≡⟨ ⊔-solve 4 (λ a b c d → ((a ⊕ b) ⊕ (a ⊕ c)) ⊕ (a ⊕ d) ⊜ a ⊕ ((b ⊕ c) ⊕ d)) refl (callDepth e′) (callDepth e) (callDepth e₁) (callDepth e₂) ⟩
+ callDepth e′ ⊔ (callDepth e ⊔ callDepth e₁ ⊔ callDepth e₂)
+ ∎
+
+updateRef-pres-callDepth : ∀ {e : Expression Γ t} ref stateless val (e′ : Expression Γ t′) →
+ callDepth (updateRef {e = e} ref stateless val e′) ℕ.≤ callDepth e ⊔ callDepth val ⊔ callDepth e′
+updateRef-pres-callDepth (state i) stateless val e′ = contradiction (state i) stateless
+updateRef-pres-callDepth (var i) stateless val e′ = substAt-pres-callDepth i e′ val
+updateRef-pres-callDepth (abort e) stateless val e′ = ℕₚ.m≤n⊔m (callDepth e ⊔ callDepth val) (callDepth e′)
+updateRef-pres-callDepth [ ref ] stateless val e′ = updateRef-pres-callDepth ref (stateless ∘ [_]) (unbox val) e′
+updateRef-pres-callDepth (unbox ref) stateless val e′ = updateRef-pres-callDepth ref (stateless ∘ unbox) [ val ] e′
+updateRef-pres-callDepth (splice {e₁ = e₁} {e₂ = e₂} ref ref₁ e₃) stateless val e′ = begin
+ callDepth outer
+ ≤⟨ updateRef-pres-callDepth ref₁ (stateless ∘ (λ x → spliceʳ _ x e₃)) (head (tail (cut val e₃))) inner ⟩
+ callDepth e₂ ⊔ (callDepth val ⊔ callDepth e₃) ⊔ callDepth inner
+ ≤⟨ ℕₚ.⊔-monoʳ-≤ (callDepth e₂ ⊔ (callDepth val ⊔ callDepth e₃)) (updateRef-pres-callDepth ref (stateless ∘ (λ x → spliceˡ x _ e₃)) (head (cut val e₃)) e′) ⟩
+ callDepth e₂ ⊔ (callDepth val ⊔ callDepth e₃) ⊔ (callDepth e₁ ⊔ (callDepth val ⊔ callDepth e₃) ⊔ callDepth e′)
+ ≡⟨ ⊔-solve 5 (λ a b c d e → ((b ⊕ (d ⊕ c)) ⊕ ((a ⊕ (d ⊕ c)) ⊕ e)) ⊜ ((((a ⊕ b) ⊕ c) ⊕ d) ⊕ e)) refl (callDepth e₁) (callDepth e₂) (callDepth e₃) (callDepth val) (callDepth e′) ⟩
+ callDepth e₁ ⊔ callDepth e₂ ⊔ callDepth e₃ ⊔ callDepth val ⊔ callDepth e′
+ ∎
+ where
+ inner = updateRef ref (stateless ∘ (λ x → spliceˡ x _ e₃)) (head (cut val e₃)) e′
+ outer = updateRef ref₁ (stateless ∘ (λ x → spliceʳ _ x e₃)) (head (tail (cut val e₃))) inner
+updateRef-pres-callDepth (cut {e₁ = e₁} ref e₂) stateless val e′ = begin
+ callDepth (updateRef ref (stateless ∘ (λ x → (cut x e₂))) (splice (head val) (head (tail val)) e₂) e′)
+ ≤⟨ updateRef-pres-callDepth ref (stateless ∘ (λ x → (cut x e₂))) (splice (head val) (head (tail val)) e₂) e′ ⟩
+ callDepth e₁ ⊔ (callDepth val ⊔ callDepth val ⊔ callDepth e₂) ⊔ callDepth e′
+ ≡⟨ ⊔-solve 4 (λ a b c d → (a ⊕ ((c ⊕ c) ⊕ b)) ⊕ d ⊜ ((a ⊕ b) ⊕ c) ⊕ d) refl (callDepth e₁) (callDepth e₂) (callDepth val) (callDepth e′) ⟩
+ callDepth e₁ ⊔ callDepth e₂ ⊔ callDepth val ⊔ callDepth e′
+ ∎
+updateRef-pres-callDepth (cast eq ref) stateless val e′ = updateRef-pres-callDepth ref (stateless ∘ cast eq) (cast (sym eq) val) e′
+updateRef-pres-callDepth nil stateless val e′ = ℕₚ.m≤n⊔m (callDepth val) (callDepth e′)
+updateRef-pres-callDepth (cons {e₁ = e₁} {e₂ = e₂} ref ref₁) stateless val e′ = begin
+ callDepth outer
+ ≤⟨ updateRef-pres-callDepth ref₁ (stateless ∘ consʳ e₁) (tail val) inner ⟩
+ callDepth e₂ ⊔ callDepth val ⊔ callDepth inner
+ ≤⟨ ℕₚ.⊔-monoʳ-≤ (callDepth e₂ ⊔ callDepth val) (updateRef-pres-callDepth ref (stateless ∘ (λ x → consˡ x e₂)) (head val) e′) ⟩
+ callDepth e₂ ⊔ callDepth val ⊔ (callDepth e₁ ⊔ callDepth val ⊔ callDepth e′)
+ ≡⟨ ⊔-solve 4 (λ a b c d → (b ⊕ c) ⊕ ((a ⊕ c) ⊕ d) ⊜ ((a ⊕ b) ⊕ c) ⊕ d) refl (callDepth e₁) (callDepth e₂) (callDepth val) (callDepth e′) ⟩
+ callDepth e₁ ⊔ callDepth e₂ ⊔ callDepth val ⊔ callDepth e′
+ ∎
+ where
+ inner = updateRef ref (stateless ∘ (λ x → consˡ x e₂)) (head val) e′
+ outer = updateRef ref₁ (stateless ∘ consʳ e₁) (tail val) inner
+updateRef-pres-callDepth (head {e = e} ref) stateless val e′ = begin
+ callDepth (updateRef ref (stateless ∘ head) (cons val (tail e)) e′)
+ ≤⟨ updateRef-pres-callDepth ref (stateless ∘ head) (cons val (tail e)) e′ ⟩
+ callDepth e ⊔ (callDepth val ⊔ callDepth e) ⊔ callDepth e′
+ ≡⟨ ⊔-solve 3 (λ a b c → (a ⊕ (b ⊕ a)) ⊕ c ⊜ (a ⊕ b) ⊕ c) refl (callDepth e) (callDepth val) (callDepth e′) ⟩
+ callDepth e ⊔ callDepth val ⊔ callDepth e′
+ ∎
+updateRef-pres-callDepth (tail {e = e} ref) stateless val e′ = begin
+ callDepth (updateRef ref (stateless ∘ tail) (cons (head e) val) e′)
+ ≤⟨ updateRef-pres-callDepth ref (stateless ∘ tail) (cons (head e) val) e′ ⟩
+ callDepth e ⊔ (callDepth e ⊔ callDepth val) ⊔ callDepth e′
+ ≡⟨ ⊔-solve 3 (λ a b c → (a ⊕ (a ⊕ b)) ⊕ c ⊜ (a ⊕ b) ⊕ c) refl (callDepth e) (callDepth val) (callDepth e′) ⟩
+ callDepth e ⊔ callDepth val ⊔ callDepth e′
+ ∎
+
+subst-pres-callDepth : ∀ (e : Expression Γ t) (args : All (Expression Δ) Γ) → callDepth (subst e args) ℕ.≤ callDepth e ⊔ callDepth′ args
+subst-pres-callDepth (lit x) args = ℕ.z≤n
+subst-pres-callDepth (state i) args = ℕ.z≤n
+subst-pres-callDepth (var i) args = helper i args
+ where
+ helper : ∀ i (es : All (Expression Γ) Δ) → callDepth (All.lookup i es) ℕ.≤ callDepth′ es
+ helper 0F (e ∷ es) = ℕₚ.m≤m⊔n (callDepth e) (callDepth′ es)
+ helper (suc i) (e ∷ es) = ℕₚ.m≤n⇒m≤o⊔n (callDepth e) (helper i es)
+subst-pres-callDepth (abort e) args = subst-pres-callDepth e args
+subst-pres-callDepth (e ≟ e₁) args = begin
+ callDepth (subst e args) ⊔ callDepth (subst e₁ args)
+ ≤⟨ ℕₚ.⊔-mono-≤ (subst-pres-callDepth e args) (subst-pres-callDepth e₁ args) ⟩
+ callDepth e ⊔ callDepth′ args ⊔ (callDepth e₁ ⊔ callDepth′ args)
+ ≡⟨ ⊔-solve 3 (λ a b c → (a ⊕ c) ⊕ (b ⊕ c) ⊜ (a ⊕ b) ⊕ c) refl (callDepth e) (callDepth e₁) (callDepth′ args) ⟩
+ callDepth e ⊔ callDepth e₁ ⊔ callDepth′ args
+ ∎
+subst-pres-callDepth (e <? e₁) args = begin
+ callDepth (subst e args) ⊔ callDepth (subst e₁ args)
+ ≤⟨ ℕₚ.⊔-mono-≤ (subst-pres-callDepth e args) (subst-pres-callDepth e₁ args) ⟩
+ callDepth e ⊔ callDepth′ args ⊔ (callDepth e₁ ⊔ callDepth′ args)
+ ≡⟨ ⊔-solve 3 (λ a b c → (a ⊕ c) ⊕ (b ⊕ c) ⊜ (a ⊕ b) ⊕ c) refl (callDepth e) (callDepth e₁) (callDepth′ args) ⟩
+ callDepth e ⊔ callDepth e₁ ⊔ callDepth′ args
+ ∎
+subst-pres-callDepth (inv e) args = subst-pres-callDepth e args
+subst-pres-callDepth (e && e₁) args = begin
+ callDepth (subst e args) ⊔ callDepth (subst e₁ args)
+ ≤⟨ ℕₚ.⊔-mono-≤ (subst-pres-callDepth e args) (subst-pres-callDepth e₁ args) ⟩
+ callDepth e ⊔ callDepth′ args ⊔ (callDepth e₁ ⊔ callDepth′ args)
+ ≡⟨ ⊔-solve 3 (λ a b c → (a ⊕ c) ⊕ (b ⊕ c) ⊜ (a ⊕ b) ⊕ c) refl (callDepth e) (callDepth e₁) (callDepth′ args) ⟩
+ callDepth e ⊔ callDepth e₁ ⊔ callDepth′ args
+ ∎
+subst-pres-callDepth (e || e₁) args = begin
+ callDepth (subst e args) ⊔ callDepth (subst e₁ args)
+ ≤⟨ ℕₚ.⊔-mono-≤ (subst-pres-callDepth e args) (subst-pres-callDepth e₁ args) ⟩
+ callDepth e ⊔ callDepth′ args ⊔ (callDepth e₁ ⊔ callDepth′ args)
+ ≡⟨ ⊔-solve 3 (λ a b c → (a ⊕ c) ⊕ (b ⊕ c) ⊜ (a ⊕ b) ⊕ c) refl (callDepth e) (callDepth e₁) (callDepth′ args) ⟩
+ callDepth e ⊔ callDepth e₁ ⊔ callDepth′ args
+ ∎
+subst-pres-callDepth (not e) args = subst-pres-callDepth e args
+subst-pres-callDepth (e and e₁) args = begin
+ callDepth (subst e args) ⊔ callDepth (subst e₁ args)
+ ≤⟨ ℕₚ.⊔-mono-≤ (subst-pres-callDepth e args) (subst-pres-callDepth e₁ args) ⟩
+ callDepth e ⊔ callDepth′ args ⊔ (callDepth e₁ ⊔ callDepth′ args)
+ ≡⟨ ⊔-solve 3 (λ a b c → (a ⊕ c) ⊕ (b ⊕ c) ⊜ (a ⊕ b) ⊕ c) refl (callDepth e) (callDepth e₁) (callDepth′ args) ⟩
+ callDepth e ⊔ callDepth e₁ ⊔ callDepth′ args
+ ∎
+subst-pres-callDepth (e or e₁) args = begin
+ callDepth (subst e args) ⊔ callDepth (subst e₁ args)
+ ≤⟨ ℕₚ.⊔-mono-≤ (subst-pres-callDepth e args) (subst-pres-callDepth e₁ args) ⟩
+ callDepth e ⊔ callDepth′ args ⊔ (callDepth e₁ ⊔ callDepth′ args)
+ ≡⟨ ⊔-solve 3 (λ a b c → (a ⊕ c) ⊕ (b ⊕ c) ⊜ (a ⊕ b) ⊕ c) refl (callDepth e) (callDepth e₁) (callDepth′ args) ⟩
+ callDepth e ⊔ callDepth e₁ ⊔ callDepth′ args
+ ∎
+subst-pres-callDepth [ e ] args = subst-pres-callDepth e args
+subst-pres-callDepth (unbox e) args = subst-pres-callDepth e args
+subst-pres-callDepth (splice e e₁ e₂) args = begin
+ callDepth (subst e args) ⊔ callDepth (subst e₁ args) ⊔ callDepth (subst e₂ args)
+ ≤⟨ ℕₚ.⊔-mono-≤ (ℕₚ.⊔-mono-≤ (subst-pres-callDepth e args) (subst-pres-callDepth e₁ args)) (subst-pres-callDepth e₂ args) ⟩
+ callDepth e ⊔ callDepth′ args ⊔ (callDepth e₁ ⊔ callDepth′ args) ⊔ (callDepth e₂ ⊔ callDepth′ args)
+ ≡⟨ ⊔-solve 4 (λ a b c d → ((a ⊕ d) ⊕ (b ⊕ d)) ⊕ (c ⊕ d) ⊜ ((a ⊕ b) ⊕ c) ⊕ d) refl (callDepth e) (callDepth e₁) (callDepth e₂) (callDepth′ args) ⟩
+ callDepth e ⊔ callDepth e₁ ⊔ callDepth e₂ ⊔ callDepth′ args
+ ∎
+subst-pres-callDepth (cut e e₁) args = begin
+ callDepth (subst e args) ⊔ callDepth (subst e₁ args)
+ ≤⟨ ℕₚ.⊔-mono-≤ (subst-pres-callDepth e args) (subst-pres-callDepth e₁ args) ⟩
+ callDepth e ⊔ callDepth′ args ⊔ (callDepth e₁ ⊔ callDepth′ args)
+ ≡⟨ ⊔-solve 3 (λ a b c → (a ⊕ c) ⊕ (b ⊕ c) ⊜ (a ⊕ b) ⊕ c) refl (callDepth e) (callDepth e₁) (callDepth′ args) ⟩
+ callDepth e ⊔ callDepth e₁ ⊔ callDepth′ args
+ ∎
+subst-pres-callDepth (cast eq e) args = subst-pres-callDepth e args
+subst-pres-callDepth (- e) args = subst-pres-callDepth e args
+subst-pres-callDepth (e + e₁) args = begin
+ callDepth (subst e args) ⊔ callDepth (subst e₁ args)
+ ≤⟨ ℕₚ.⊔-mono-≤ (subst-pres-callDepth e args) (subst-pres-callDepth e₁ args) ⟩
+ callDepth e ⊔ callDepth′ args ⊔ (callDepth e₁ ⊔ callDepth′ args)
+ ≡⟨ ⊔-solve 3 (λ a b c → (a ⊕ c) ⊕ (b ⊕ c) ⊜ (a ⊕ b) ⊕ c) refl (callDepth e) (callDepth e₁) (callDepth′ args) ⟩
+ callDepth e ⊔ callDepth e₁ ⊔ callDepth′ args
+ ∎
+subst-pres-callDepth (e * e₁) args = begin
+ callDepth (subst e args) ⊔ callDepth (subst e₁ args)
+ ≤⟨ ℕₚ.⊔-mono-≤ (subst-pres-callDepth e args) (subst-pres-callDepth e₁ args) ⟩
+ callDepth e ⊔ callDepth′ args ⊔ (callDepth e₁ ⊔ callDepth′ args)
+ ≡⟨ ⊔-solve 3 (λ a b c → (a ⊕ c) ⊕ (b ⊕ c) ⊜ (a ⊕ b) ⊕ c) refl (callDepth e) (callDepth e₁) (callDepth′ args) ⟩
+ callDepth e ⊔ callDepth e₁ ⊔ callDepth′ args
+ ∎
+subst-pres-callDepth (e ^ x) args = subst-pres-callDepth e args
+subst-pres-callDepth (e >> x) args = subst-pres-callDepth e args
+subst-pres-callDepth (rnd e) args = subst-pres-callDepth e args
+subst-pres-callDepth (fin x e) args = subst-pres-callDepth e args
+subst-pres-callDepth (asInt e) args = subst-pres-callDepth e args
+subst-pres-callDepth nil args = ℕ.z≤n
+subst-pres-callDepth (cons e e₁) args = begin
+ callDepth (subst e args) ⊔ callDepth (subst e₁ args)
+ ≤⟨ ℕₚ.⊔-mono-≤ (subst-pres-callDepth e args) (subst-pres-callDepth e₁ args) ⟩
+ callDepth e ⊔ callDepth′ args ⊔ (callDepth e₁ ⊔ callDepth′ args)
+ ≡⟨ ⊔-solve 3 (λ a b c → (a ⊕ c) ⊕ (b ⊕ c) ⊜ (a ⊕ b) ⊕ c) refl (callDepth e) (callDepth e₁) (callDepth′ args) ⟩
+ callDepth e ⊔ callDepth e₁ ⊔ callDepth′ args
+ ∎
+subst-pres-callDepth (head e) args = subst-pres-callDepth e args
+subst-pres-callDepth (tail e) args = subst-pres-callDepth e args
+subst-pres-callDepth (call f es) args = begin
+ suc (funCallDepth f) ⊔ callDepth′ (subst′ es args)
+ ≤⟨ ℕₚ.⊔-monoʳ-≤ (suc (funCallDepth f)) (helper es args) ⟩
+ suc (funCallDepth f) ⊔ (callDepth′ es ⊔ callDepth′ args)
+ ≡⟨ ⊔-solve 3 (λ a b c → a ⊕ (b ⊕ c) ⊜ (a ⊕ b) ⊕ c) refl (suc (funCallDepth f)) (callDepth′ es) (callDepth′ args) ⟩
+ suc (funCallDepth f) ⊔ callDepth′ es ⊔ callDepth′ args
+ ∎
+ where
+ helper : ∀ {n ts} (es : All (Expression Γ) {n} ts) (args : All (Expression Δ) Γ) → callDepth′ (subst′ es args) ℕ.≤ callDepth′ es ℕ.⊔ callDepth′ args
+ helper [] args = ℕ.z≤n
+ helper (e ∷ es) args = begin
+ callDepth (subst e args) ⊔ callDepth′ (subst′ es args)
+ ≤⟨ ℕₚ.⊔-mono-≤ (subst-pres-callDepth e args) (helper es args) ⟩
+ callDepth e ⊔ callDepth′ args ⊔ (callDepth′ es ⊔ callDepth′ args)
+ ≡⟨ ⊔-solve 3 (λ a b c → (a ⊕ c) ⊕ (b ⊕ c) ⊜ (a ⊕ b) ⊕ c) refl (callDepth e) (callDepth′ es) (callDepth′ args) ⟩
+ callDepth e ⊔ callDepth′ es ⊔ callDepth′ args
+ ∎
+subst-pres-callDepth (if e then e₁ else e₂) args = begin
+ callDepth (subst e args) ⊔ callDepth (subst e₁ args) ⊔ callDepth (subst e₂ args)
+ ≤⟨ ℕₚ.⊔-mono-≤ (ℕₚ.⊔-mono-≤ (subst-pres-callDepth e args) (subst-pres-callDepth e₁ args)) (subst-pres-callDepth e₂ args) ⟩
+ callDepth e ⊔ callDepth′ args ⊔ (callDepth e₁ ⊔ callDepth′ args) ⊔ (callDepth e₂ ⊔ callDepth′ args)
+ ≡⟨ ⊔-solve 4 (λ a b c d → ((a ⊕ d) ⊕ (b ⊕ d)) ⊕ (c ⊕ d) ⊜ ((a ⊕ b) ⊕ c) ⊕ d) refl (callDepth e) (callDepth e₁) (callDepth e₂) (callDepth′ args) ⟩
+ callDepth e ⊔ callDepth e₁ ⊔ callDepth e₂ ⊔ callDepth′ args
+ ∎
+
+wkn-pres-callDepth : ∀ t i (s : Statement Γ) → stmtCallDepth (wknStatementAt t i s) ≡ stmtCallDepth s
+wkn-pres-callDepth t i (s Code.∙ s₁) = cong₂ _⊔_ (wkn-pres-callDepth t i s) (wkn-pres-callDepth t i s₁)
+wkn-pres-callDepth t i Code.skip = refl
+wkn-pres-callDepth t i (ref Code.≔ x) = cong₂ _⊔_ (wknAt-pres-callDepth i ref) (wknAt-pres-callDepth i x)
+wkn-pres-callDepth t i (Code.declare x s) = cong₂ _⊔_ (wknAt-pres-callDepth i x) (wkn-pres-callDepth t (suc i) s)
+wkn-pres-callDepth t i (Code.invoke p es) = cong (procCallDepth p ⊔_) (wknAt′-pres-callDepth i es)
+wkn-pres-callDepth t i (Code.if x then s) = cong₂ _⊔_ (wknAt-pres-callDepth i x) (wkn-pres-callDepth t i s)
+wkn-pres-callDepth t i (Code.if x then s else s₁) = congₙ 3 (λ m n o → m ⊔ n ⊔ o) (wknAt-pres-callDepth i x) (wkn-pres-callDepth t i s) (wkn-pres-callDepth t i s₁)
+wkn-pres-callDepth t i (Code.for m s) = wkn-pres-callDepth t (suc i) s
+
+private
+ index₀ : Statement Γ → ℕ
+ index₀ (s ∙ s₁) = index₀ s ℕ.+ index₀ s₁
+ index₀ skip = 0
+ index₀ (ref ≔ x) = 0
+ index₀ (declare x s) = index₀ s
+ index₀ (invoke p es) = 0
+ index₀ (if x then s) = index₀ s
+ index₀ (if x then s else s₁) = suc (index₀ s ℕ.+ index₀ s₁)
+ index₀ (for m s) = index₀ s
+
+ index₁ : Statement Γ → ℕ
+ index₁ (s ∙ s₁) = suc (index₁ s ℕ.+ index₁ s₁)
+ index₁ skip = 0
+ index₁ (ref ≔ x) = 0
+ index₁ (declare x s) = index₁ s
+ index₁ (invoke x x₁) = 0
+ index₁ (if x then s) = suc (3 ℕ.* index₁ s)
+ index₁ (if x then s else s₁) = suc (3 ℕ.* index₁ s ℕ.+ index₁ s₁)
+ index₁ (for m s) = suc (index₁ s)
+
+ index₂ : Statement Γ → ℕ
+ index₂ (s ∙ s₁) = 0
+ index₂ skip = 0
+ index₂ (ref ≔ x) = 0
+ index₂ (declare x s) = suc (index₂ s)
+ index₂ (invoke _ _) = 0
+ index₂ (if x then s) = 2 ℕ.* index₂ s
+ index₂ (if x then s else s₁) = 0
+ index₂ (for m s) = 0
+
+ wkn-pres-index₀ : ∀ t i s → index₀ (wknStatementAt {Γ = Γ} t i s) ≡ index₀ s
+ wkn-pres-index₀ _ i (s ∙ s₁) = cong₂ ℕ._+_ (wkn-pres-index₀ _ i s) (wkn-pres-index₀ _ i s₁)
+ wkn-pres-index₀ _ i skip = refl
+ wkn-pres-index₀ _ i (ref ≔ x) = refl
+ wkn-pres-index₀ _ i (declare x s) = wkn-pres-index₀ _ (suc i) s
+ wkn-pres-index₀ _ i (invoke x x₁) = refl
+ wkn-pres-index₀ _ i (if x then s) = wkn-pres-index₀ _ i s
+ wkn-pres-index₀ _ i (if x then s else s₁) = cong₂ (λ m n → suc (m ℕ.+ n)) (wkn-pres-index₀ _ i s) (wkn-pres-index₀ _ i s₁)
+ wkn-pres-index₀ _ i (for m s) = wkn-pres-index₀ _ (suc i) s
+
+ wkn-pres-index₁ : ∀ t i s → index₁ (wknStatementAt {Γ = Γ} t i s) ≡ index₁ s
+ wkn-pres-index₁ _ i (s ∙ s₁) = cong₂ (λ m n → suc (m ℕ.+ n)) (wkn-pres-index₁ _ i s) (wkn-pres-index₁ _ i s₁)
+ wkn-pres-index₁ _ i skip = refl
+ wkn-pres-index₁ _ i (ref ≔ x) = refl
+ wkn-pres-index₁ _ i (declare x s) = wkn-pres-index₁ _ (suc i) s
+ wkn-pres-index₁ _ i (invoke x x₁) = refl
+ wkn-pres-index₁ _ i (if x then s) = cong (λ m → suc (3 ℕ.* m)) (wkn-pres-index₁ _ i s)
+ wkn-pres-index₁ _ i (if x then s else s₁) = cong₂ (λ m n → suc (3 ℕ.* m ℕ.+ n)) (wkn-pres-index₁ _ i s) (wkn-pres-index₁ _ i s₁)
+ wkn-pres-index₁ _ i (for m s) = cong suc (wkn-pres-index₁ _ (suc i) s)
+
+ wkn-pres-changes : ∀ t i {s} → ChangesState (wknStatementAt {Γ = Γ} t i s) → ChangesState s
+ wkn-pres-changes t i {_ ∙ _} (s ∙ˡ s₁) = wkn-pres-changes t i s ∙ˡ _
+ wkn-pres-changes t i {_ ∙ _} (s ∙ʳ s₁) = _ ∙ʳ wkn-pres-changes t i s₁
+ wkn-pres-changes t i {_ ≔ _} (_≔_ ref {canAssign} {refsState} e) = _≔_ _ {refsState = fromWitness (wknAt-pres-stateless i (toWitness refsState))} _
+ wkn-pres-changes t i {declare _ _} (declare e s) = declare _ (wkn-pres-changes t (suc i) s)
+ wkn-pres-changes t i {invoke _ _} (invoke p es) = invoke _ _
+ wkn-pres-changes t i {if _ then _} (if e then s) = if _ then wkn-pres-changes t i s
+ wkn-pres-changes t i {if _ then _ else _} (if e then′ s else s₁) = if _ then′ wkn-pres-changes t i s else _
+ wkn-pres-changes t i {if _ then _ else _} (if e then s else′ s₁) = if _ then _ else′ wkn-pres-changes t i s₁
+ wkn-pres-changes t i {for _ _} (for m s) = for m (wkn-pres-changes t (suc i) s)
+
+ RecItem : Set
+ RecItem = ∃ λ n → ∃ (Statement {n})
+
+ inlinePredicate : RecItem → Set
+ inlinePredicate (_ , Γ , s) = ¬ ChangesState s → ∀ {ret} → (e : Expression Γ ret) → ∃ λ (e′ : Expression Γ ret) → callDepth e′ ℕ.≤ stmtCallDepth s ⊔ callDepth e
+
+ inlineRel : RecItem → RecItem → Set
+ inlineRel = Lex.×-Lex _≡_ ℕ._<_ (Lex.×-Lex _≡_ ℕ._<_ ℕ._<_) on < (index₀ ∘ proj₂ ∘ proj₂) , < (index₁ ∘ proj₂ ∘ proj₂) , (index₂ ∘ proj₂ ∘ proj₂) > >
+
+ inlineRelWf : Wf.WellFounded inlineRel
+ inlineRelWf =
+ On.wellFounded
+ < (index₀ ∘ proj₂ ∘ proj₂) , < (index₁ ∘ proj₂ ∘ proj₂) , (index₂ ∘ proj₂ ∘ proj₂) > >
+ (Lex.×-wellFounded ℕᵢ.<-wellFounded (Lex.×-wellFounded ℕᵢ.<-wellFounded ℕᵢ.<-wellFounded))
+
+ s<s∙s₁ : ∀ (s s₁ : Statement Γ) → inlineRel (_ , _ , s) (_ , _ , (s ∙ s₁))
+ s<s∙s₁ s s₁ = case index₀ s₁ return (λ x → index₀ s ℕ.< index₀ s ℕ.+ x ⊎ index₀ s ≡ index₀ s ℕ.+ x × (index₁ s ℕ.< suc (index₁ s ℕ.+ index₁ s₁) ⊎ (index₁ s ≡ suc (index₁ s ℕ.+ index₁ s₁) × index₂ s ℕ.< 0))) of λ
+ { 0 → inj₂ (sym (ℕₚ.+-identityʳ (index₀ s)) , inj₁ (ℕₚ.m≤m+n (suc (index₁ s)) (index₁ s₁)))
+ ; (suc n) → inj₁ (ℕₚ.m<m+n (index₀ s) ℕₚ.0<1+n)
+ }
+
+ s₁<s∙s₁ : ∀ (s s₁ : Statement Γ) → inlineRel (_ , _ , s₁) (_ , _ , (s ∙ s₁))
+ s₁<s∙s₁ s s₁ = case index₀ s return (λ x → index₀ s₁ ℕ.< x ℕ.+ index₀ s₁ ⊎ index₀ s₁ ≡ x ℕ.+ index₀ s₁ × (index₁ s₁ ℕ.< suc (index₁ s ℕ.+ index₁ s₁) ⊎ (index₁ s₁ ≡ suc (index₁ s ℕ.+ index₁ s₁) × index₂ s₁ ℕ.< 0))) of λ
+ { 0 → inj₂ (refl , inj₁ (ℕ.s≤s (ℕₚ.m≤n+m (index₁ s₁) (index₁ s))))
+ ; (suc n) → inj₁ (ℕₚ.m<n+m (index₀ s₁) ℕₚ.0<1+n)
+ }
+
+ s<declare‿s : ∀ (s : Statement _) (e : Expression Γ t) → inlineRel (_ , _ , s) (_ , _ , declare e s)
+ s<declare‿s s _ = inj₂ (refl , inj₂ (refl , ℕₚ.n<1+n (index₂ s)))
+
+ splitIf : ∀ (x : Expression Γ bool) (s s₁ : Statement Γ) → Statement Γ
+ splitIf x s s₁ = declare x (if var 0F then wknStatementAt bool 0F s ∙ if var 0F then wknStatementAt bool 0F s₁)
+
+ splitIf<if‿s∙s₁ : ∀ (x : Expression Γ bool) (s s₁ : Statement Γ) → inlineRel (_ , _ , splitIf x s s₁) (_ , _ , (if x then (s ∙ s₁)))
+ splitIf<if‿s∙s₁ x s s₁ = inj₂ (s≡₀s′ , inj₁ s<₁s′)
+ where
+ open +-*-Solver using (solve; _:*_; _:+_; con; _:=_)
+ s≡₀s′ = cong₂ ℕ._+_ (wkn-pres-index₀ bool 0F s) (wkn-pres-index₀ bool 0F s₁)
+ s<₁s′ = begin-strict
+ suc (suc (3 ℕ.* index₁ (wknStatementAt bool 0F s)) ℕ.+ suc (3 ℕ.* index₁ (wknStatementAt bool 0F s₁)))
+ ≡⟨ cong₂ (λ m n → suc (suc (3 ℕ.* m) ℕ.+ suc (3 ℕ.* n))) (wkn-pres-index₁ bool 0F s) (wkn-pres-index₁ bool 0F s₁) ⟩
+ suc (suc (3 ℕ.* index₁ s) ℕ.+ suc (3 ℕ.* index₁ s₁))
+ <⟨ ℕₚ.m<n+m (suc (suc (3 ℕ.* index₁ s) ℕ.+ suc (3 ℕ.* index₁ s₁))) (ℕₚ.0<1+n {n = 0}) ⟩
+ suc (suc (suc (3 ℕ.* index₁ s) ℕ.+ suc (3 ℕ.* index₁ s₁)))
+ ≡⟨ solve 2 (λ m n → con 2 :+ (con 1 :+ (con 3 :* m) :+ (con 1 :+ (con 3 :* n))) := con 1 :+ (con 3 :* (con 1 :+ m :+ n))) refl (index₁ s) (index₁ s₁) ⟩
+ suc (3 ℕ.* (suc (index₁ s ℕ.+ index₁ s₁)))
+ ∎
+
+ splitIf-stateless : ∀ {x : Expression Γ bool} {s s₁ : Statement Γ} → ¬ ChangesState (if x then (s ∙ s₁)) → ¬ ChangesState (splitIf x s s₁)
+ splitIf-stateless stateless (declare _ ((if _ then s) ∙ˡ _)) = stateless (if _ then (wkn-pres-changes bool 0F s ∙ˡ _))
+ splitIf-stateless stateless (declare _ (_ ∙ʳ (if _ then s₁))) = stateless (if _ then (_ ∙ʳ wkn-pres-changes bool 0F s₁))
+
+ pushRef-stateless : ∀ {e} {ref : Expression Γ t} {canAssign val} → ¬ ChangesState (if e then _≔_ ref {canAssign} val) → ¬ ChangesState (_≔_ ref {canAssign} (if e then val else ref))
+ pushRef-stateless stateless (_≔_ ref {refsState = refsState} _) = stateless (if _ then _≔_ ref {refsState = refsState} _)
+
+ declare∘if<if∘declare : ∀ e (e′ : Expression Γ t) s → inlineRel (_ , _ , declare e′ (if wknAt 0F e then s)) (_ , _ , (if e then declare e′ s))
+ declare∘if<if∘declare e e′ s = inj₂ (refl , inj₂ (refl , (begin-strict
+ suc (2 ℕ.* index₂ s)
+ <⟨ ℕₚ.n<1+n _ ⟩
+ suc (suc (2 ℕ.* index₂ s))
+ ≡⟨ solve 1 (λ m → con 2 :+ con 2 :* m := con 2 :* (con 1 :+ m)) refl (index₂ s) ⟩
+ 2 ℕ.* suc (index₂ s)
+ ∎)))
+ where
+ open +-*-Solver using (solve; _:*_; _:+_; con; _:=_)
+
+ declare∘if-stateless : ∀ {e} {e′ : Expression Γ t} {s} → ¬ ChangesState (if e then declare e′ s) → ¬ ChangesState (declare e′ (if wknAt 0F e then s))
+ declare∘if-stateless stateless (declare _ (if _ then s)) = stateless (if _ then (declare _ s))
+
+ if<if∘if : ∀ (e e′ : Expression Γ bool) s → inlineRel (_ , _ , (if e && e′ then s)) (_ , _ , (if e then if e′ then s))
+ if<if∘if e e′ s = inj₂ (refl , inj₁ (begin-strict
+ suc (3 ℕ.* index₁ s)
+ <⟨ ℕₚ.m<n+m (suc (3 ℕ.* index₁ s)) (ℕₚ.0<1+n {n = 2}) ⟩
+ 4 ℕ.+ 3 ℕ.* index₁ s
+ ≤⟨ ℕₚ.m≤n+m (4 ℕ.+ 3 ℕ.* index₁ s) (6 ℕ.* index₁ s) ⟩
+ 6 ℕ.* index₁ s ℕ.+ (4 ℕ.+ 3 ℕ.* index₁ s)
+ ≡⟨ solve 1 (λ m → con 6 :* m :+ (con 4 :+ con 3 :* m) := con 1 :+ con 3 :* (con 1 :+ con 3 :* m)) refl (index₁ s) ⟩
+ suc (3 ℕ.* suc (3 ℕ.* index₁ s))
+ ∎))
+ where
+ open +-*-Solver using (solve; _:*_; _:+_; con; _:=_)
+
+ if-stateless : ∀ {e e′ : Expression Γ bool} {s} → ¬ ChangesState (if e then if e′ then s) → ¬ ChangesState (if e && e′ then s)
+ if-stateless stateless (if _ then s) = stateless (if _ then if _ then s)
+
+ if∙if : ∀ (e e′ : Expression Γ bool) (s s₁ : Statement Γ) → Statement Γ
+ if∙if e e′ s s₁ =
+ declare e (
+ declare (wknAt 0F e′) (
+ if var 1F && var 0F then wknStatementAt bool 0F (wknStatementAt bool 0F s) ∙
+ if var 1F && inv (var 0F) then wknStatementAt bool 0F (wknStatementAt bool 0F s₁)))
+
+ if∙if<if‿if‿else : ∀ (e e′ : Expression Γ bool) s s₁ → inlineRel (_ , _ , if∙if e e′ s s₁) (_ , _ , (if e then (if e′ then s else s₁)))
+ if∙if<if‿if‿else e e′ s s₁ = inj₁ (begin-strict
+ index₀ (wknStatementAt bool 0F (wknStatementAt bool 0F s)) ℕ.+ index₀ (wknStatementAt bool 0F (wknStatementAt bool 0F s₁))
+ ≡⟨ cong₂ ℕ._+_ (wkn-pres-index₀ bool 0F (wknStatementAt bool 0F s)) (wkn-pres-index₀ bool 0F (wknStatementAt bool 0F s₁)) ⟩
+ index₀ (wknStatementAt bool 0F s) ℕ.+ index₀ (wknStatementAt bool 0F s₁)
+ ≡⟨ cong₂ ℕ._+_ (wkn-pres-index₀ bool 0F s) (wkn-pres-index₀ bool 0F s₁) ⟩
+ index₀ s ℕ.+ index₀ s₁
+ <⟨ ℕₚ.n<1+n (index₀ s ℕ.+ index₀ s₁) ⟩
+ suc (index₀ s ℕ.+ index₀ s₁)
+ ∎)
+
+ if∙if-stateless : ∀ {e e′ : Expression Γ bool} {s s₁} → ¬ ChangesState (if e then (if e′ then s else s₁)) → ¬ ChangesState (if∙if e e′ s s₁)
+ if∙if-stateless stateless (declare _ (declare _ ((if _ then s) ∙ˡ _))) = stateless (if _ then (if _ then′ wkn-pres-changes bool 0F (wkn-pres-changes bool 0F s) else _))
+ if∙if-stateless stateless (declare _ (declare _ (_ ∙ʳ (if _ then s₁)))) = stateless (if _ then (if _ then _ else′ wkn-pres-changes bool 0F (wkn-pres-changes bool 0F s₁)))
+
+ declare-stateless : ∀ {i : Fin m} {s : Statement (fin m ∷ Γ)} → ¬ ChangesState (for m s) → ¬ ChangesState (declare (lit (i ′f)) s)
+ declare-stateless stateless (declare _ s) = stateless (for _ s)
+
+ for‿if : ∀ (e : Expression Γ bool) m (s : Statement (fin m ∷ Γ)) → Statement Γ
+ for‿if e m s = declare e (for m (if var 1F then wknStatementAt bool 1F s))
+
+ for‿if<if‿for : ∀ (e : Expression Γ bool) m s → inlineRel (_ , _ , for‿if e m s) (_ , _ , (if e then for m s))
+ for‿if<if‿for e m s = inj₂ (s≡₀s′ , inj₁ s<₁s′)
+ where
+ open +-*-Solver using (solve; _:*_; _:+_; con; _:=_)
+ s≡₀s′ = wkn-pres-index₀ bool 1F s
+ s<₁s′ = begin-strict
+ suc (suc (3 ℕ.* index₁ (wknStatementAt bool 1F s)))
+ ≡⟨ cong (λ m → suc (suc (3 ℕ.* m))) (wkn-pres-index₁ bool 1F s) ⟩
+ suc (suc (3 ℕ.* index₁ s))
+ <⟨ ℕₚ.m<n+m (suc (suc (3 ℕ.* index₁ s))) (ℕₚ.0<1+n {n = 1}) ⟩
+ 4 ℕ.+ 3 ℕ.* index₁ s
+ ≡⟨ solve 1 (λ m → con 4 :+ con 3 :* m := con 1 :+ con 3 :* (con 1 :+ m)) refl (index₁ s) ⟩
+ suc (3 ℕ.* suc (index₁ s))
+ ∎
+
+ for‿if-stateless : ∀ {e : Expression Γ bool} {m s} → ¬ ChangesState (if e then for m s) → ¬ ChangesState (for‿if e m s)
+ for‿if-stateless stateless (declare _ (for _ (if _ then s))) = stateless (if _ then (for _ (wkn-pres-changes bool 1F s)))
+
+ if∙if′ : ∀ (e : Expression Γ bool) (s s₁ : Statement Γ) → Statement Γ
+ if∙if′ e s s₁ = declare e (
+ if var 0F then wknStatementAt bool 0F s ∙
+ if inv (var 0F) then wknStatementAt bool 0F s₁)
+
+ if∙if′<if‿else : ∀ (e : Expression Γ bool) s s₁ → inlineRel (_ , _ , if∙if′ e s s₁) (_ , _ , (if e then s else s₁))
+ if∙if′<if‿else e s s₁ = inj₁ (begin-strict
+ index₀ (wknStatementAt bool 0F s) ℕ.+ index₀ (wknStatementAt bool 0F s₁)
+ ≡⟨ cong₂ ℕ._+_ (wkn-pres-index₀ bool 0F s) (wkn-pres-index₀ bool 0F s₁) ⟩
+ index₀ s ℕ.+ index₀ s₁
+ <⟨ ℕₚ.n<1+n (index₀ s ℕ.+ index₀ s₁) ⟩
+ suc (index₀ s ℕ.+ index₀ s₁)
+ ∎)
+
+ if∙if′-stateless : ∀ {e : Expression Γ bool} {s s₁} → ¬ ChangesState (if e then s else s₁) → ¬ ChangesState (if∙if′ e s s₁)
+ if∙if′-stateless stateless (declare _ ((if _ then s) ∙ˡ _)) = stateless (if _ then′ wkn-pres-changes bool 0F s else _)
+ if∙if′-stateless stateless (declare _ (_ ∙ʳ (if _ then s₁))) = stateless (if _ then _ else′ wkn-pres-changes bool 0F s₁)
+
+ inlineHelper : ∀ n,Γ,s → Wf.WfRec inlineRel inlinePredicate n,Γ,s → inlinePredicate n,Γ,s
+ proj₁ (inlineHelper (_ , _ , (s ∙ s₁)) rec stateless e) =
+ proj₁ (rec
+ (_ , _ , s₁)
+ (s₁<s∙s₁ s s₁)
+ (stateless ∘ (s ∙ʳ_))
+ (proj₁ (rec
+ (_ , _ , s)
+ (s<s∙s₁ s s₁)
+ (stateless ∘ (_∙ˡ s₁))
+ e)))
+ proj₁ (inlineHelper (_ , _ , skip) rec stateless e) = e
+ proj₁ (inlineHelper (_ , _ , (_≔_ ref {canAssign} val)) rec stateless e) =
+ updateRef
+ (toWitness canAssign)
+ (stateless ∘ λ x → _≔_ ref {refsState = fromWitness x} val)
+ val
+ e
+ proj₁ (inlineHelper (_ , _ , declare x s) rec stateless e) =
+ elimAt 0F
+ (proj₁ (rec
+ (_ , _ , s)
+ (s<declare‿s s x)
+ (stateless ∘ declare x)
+ (wknAt 0F e)))
+ x
+ proj₁ (inlineHelper (_ , _ , invoke p es) rec stateless e) = contradiction (invoke p es) stateless
+ proj₁ (inlineHelper (_ , _ , (if x then (s ∙ s₁))) rec stateless e) =
+ proj₁ (rec
+ (_ , _ , splitIf x s s₁)
+ (splitIf<if‿s∙s₁ x s s₁)
+ (splitIf-stateless stateless)
+ e)
+ proj₁ (inlineHelper (_ , _ , (if x then skip)) rec stateless e) = e
+ proj₁ (inlineHelper (_ , _ , (if x then (_≔_ ref {canAssign} val))) rec stateless e) =
+ proj₁ (rec
+ (_ , _ , (_≔_ ref {canAssign} (if x then val else ref)))
+ (inj₂ (refl , inj₁ ℕₚ.0<1+n))
+ (pushRef-stateless stateless)
+ e)
+ proj₁ (inlineHelper (_ , _ , (if x then declare x₁ s)) rec stateless e) =
+ proj₁ (rec
+ (_ , _ , declare x₁ (if wknAt 0F x then s))
+ (declare∘if<if∘declare x x₁ s)
+ (declare∘if-stateless stateless)
+ e)
+ proj₁ (inlineHelper (_ , _ , (if x then invoke p es)) rec stateless e) = contradiction (if x then invoke p es) stateless
+ proj₁ (inlineHelper (_ , _ , (if x then if x₁ then s)) rec stateless e) =
+ proj₁ (rec
+ (_ , _ , (if (x && x₁) then s))
+ (if<if∘if x x₁ s)
+ (if-stateless stateless)
+ e)
+ proj₁ (inlineHelper (_ , _ , (if x then (if x₁ then s else s₁))) rec stateless e) =
+ proj₁ (rec
+ (_ , _ , if∙if x x₁ s s₁)
+ (if∙if<if‿if‿else x x₁ s s₁)
+ (if∙if-stateless stateless)
+ e)
+ proj₁ (inlineHelper (_ , _ , (if x then for m s)) rec stateless e) =
+ proj₁ (rec
+ (_ , _ , for‿if x m s)
+ (for‿if<if‿for x m s)
+ (for‿if-stateless stateless)
+ e)
+ proj₁ (inlineHelper (_ , _ , (if x then s else s₁)) rec stateless e) =
+ proj₁ (rec
+ (_ , _ , if∙if′ x s s₁)
+ (if∙if′<if‿else x s s₁)
+ (if∙if′-stateless stateless)
+ e)
+ proj₁ (inlineHelper (_ , _ , for m s) rec stateless e) =
+ Vec.foldl
+ (λ _ → Expression _ _)
+ (λ e i →
+ proj₁ (rec
+ (_ , _ , declare (lit (i ′f)) s)
+ (inj₂ (refl , inj₁ (ℕₚ.n<1+n (index₁ s))))
+ (declare-stateless stateless)
+ e))
+ e
+ (Vec.allFin _)
+ proj₂ (inlineHelper (_ , _ , (s ∙ s₁)) rec stateless e) = begin
+ callDepth (proj₁ outer)
+ ≤⟨ proj₂ outer ⟩
+ stmtCallDepth s₁ ⊔ callDepth (proj₁ inner)
+ ≤⟨ ℕₚ.⊔-monoʳ-≤ (stmtCallDepth s₁) (proj₂ inner) ⟩
+ stmtCallDepth s₁ ⊔ (stmtCallDepth s ⊔ callDepth e)
+ ≡⟨ ⊔-solve 3 (λ a b c → b ⊕ (a ⊕ c) ⊜ (a ⊕ b) ⊕ c) refl (stmtCallDepth s) (stmtCallDepth s₁) (callDepth e) ⟩
+ stmtCallDepth s ⊔ stmtCallDepth s₁ ⊔ callDepth e
+ ∎
+ where
+ inner = rec (_ , _ , s) (s<s∙s₁ s s₁) (stateless ∘ (_∙ˡ s₁)) e
+ outer = rec (_ , _ , s₁) (s₁<s∙s₁ s s₁) (stateless ∘ (s ∙ʳ_)) (proj₁ inner)
+ -- with rec (_ , _ , s) (s<s∙s₁ s s₁) (stateless ∘ (_∙ˡ s₁)) e
+ -- ... | inner , eq with inner | eq | rec (_ , _ , s₁) (s₁<s∙s₁ s s₁) (stateless ∘ (s ∙ʳ_)) inner
+ -- ... | inner | inj₁ inner≤s | outer , inj₁ outer≤s₁ = inj₁ (ℕₚ.m≤n⇒m≤o⊔n (stmtCallDepth s) outer≤s₁)
+ -- ... | inner | inj₁ inner≤s | outer , inj₂ outer≡inner = inj₁ (begin
+ -- callDepth outer ≡⟨ outer≡inner ⟩
+ -- callDepth inner ≤⟨ ℕₚ.m≤n⇒m≤n⊔o (stmtCallDepth s₁) inner≤s ⟩
+ -- stmtCallDepth s ⊔ stmtCallDepth s₁ ∎)
+ -- ... | inner | inj₂ inner≡e | outer , inj₁ outer≤s₁ = inj₁ (ℕₚ.m≤n⇒m≤o⊔n (stmtCallDepth s) outer≤s₁)
+ -- ... | inner | inj₂ inner≡e | outer , inj₂ outer≡inner = inj₂ (trans outer≡inner inner≡e)
+ proj₂ (inlineHelper (_ , _ , skip) rec stateless e) = ℕₚ.≤-refl
+ proj₂ (inlineHelper (_ , _ , (_≔_ ref {canAssign} x)) rec stateless e) = updateRef-pres-callDepth (toWitness canAssign) (λ x → stateless (_≔_ _ {refsState = fromWitness x} _)) x e
+ proj₂ (inlineHelper (_ , _ , declare x s) rec stateless e) = begin
+ callDepth (elimAt 0F (proj₁ inner) x)
+ ≤⟨ elimAt-pres-callDepth 0F (proj₁ inner) x ⟩
+ callDepth x ⊔ callDepth (proj₁ inner)
+ ≤⟨ ℕₚ.⊔-monoʳ-≤ (callDepth x) (proj₂ inner) ⟩
+ callDepth x ⊔ (stmtCallDepth s ⊔ callDepth (wknAt 0F e))
+ ≡⟨ cong (λ m → callDepth x ⊔ (stmtCallDepth s ⊔ m)) (wknAt-pres-callDepth 0F e) ⟩
+ callDepth x ⊔ (stmtCallDepth s ⊔ callDepth e)
+ ≡⟨ ⊔-solve 3 (λ a b c → a ⊕ (b ⊕ c) ⊜ (a ⊕ b) ⊕ c) refl (callDepth x) (stmtCallDepth s) (callDepth e) ⟩
+ callDepth x ⊔ stmtCallDepth s ⊔ callDepth e
+ ∎
+ where
+ inner = rec (_ , _ , s) (s<declare‿s s x) (λ x → stateless (declare _ x)) (wknAt 0F e)
+ proj₂ (inlineHelper (_ , _ , invoke p es) rec stateless e) = contradiction (invoke p es) stateless
+ proj₂ (inlineHelper (_ , _ , (if x then (s ∙ s₁))) rec stateless e) = begin
+ callDepth (proj₁ inner)
+ ≤⟨ proj₂ inner ⟩
+ callDepth x ⊔ (stmtCallDepth (wknStatementAt bool 0F s) ⊔ stmtCallDepth (wknStatementAt bool 0F s₁)) ⊔ callDepth e
+ ≡⟨ cong₂ (λ m n → callDepth x ⊔ (m ⊔ n) ⊔ callDepth e) (wkn-pres-callDepth bool 0F s) (wkn-pres-callDepth bool 0F s₁) ⟩
+ callDepth x ⊔ (stmtCallDepth s ⊔ stmtCallDepth s₁) ⊔ callDepth e
+ ∎
+ where
+ inner = rec (_ , _ , splitIf x s s₁) (splitIf<if‿s∙s₁ x s s₁) (splitIf-stateless stateless) e
+ proj₂ (inlineHelper (_ , _ , (if x then skip)) rec stateless e) = ℕₚ.m≤n⊔m (callDepth x ⊔ 0) (callDepth e)
+ proj₂ (inlineHelper (_ , _ , (if x then (_≔_ ref {canAssign} val))) rec stateless e) = begin
+ callDepth (proj₁ inner)
+ ≤⟨ proj₂ inner ⟩
+ callDepth ref ⊔ (callDepth x ⊔ callDepth val ⊔ callDepth ref) ⊔ callDepth e
+ ≡⟨ ⊔-solve 4 (λ a b c d → (b ⊕ ((a ⊕ c) ⊕ b)) ⊕ d ⊜ (a ⊕ (b ⊕ c)) ⊕ d) refl (callDepth x) (callDepth ref) (callDepth val) (callDepth e) ⟩
+ callDepth x ⊔ (callDepth ref ⊔ callDepth val) ⊔ callDepth e
+ ∎
+ where
+ inner = rec (_ , _ , (_≔_ ref {canAssign} (if x then val else ref))) (inj₂ (refl , inj₁ ℕₚ.0<1+n)) (pushRef-stateless stateless) e
+ proj₂ (inlineHelper (_ , _ , (if x then declare x₁ s)) rec stateless e) = begin
+ callDepth(proj₁ inner)
+ ≤⟨ proj₂ inner ⟩
+ callDepth x₁ ⊔ (callDepth (wknAt 0F x) ⊔ stmtCallDepth s) ⊔ callDepth e
+ ≡⟨ cong (λ m → callDepth x₁ ⊔ (m ⊔ stmtCallDepth s) ⊔ callDepth e) (wknAt-pres-callDepth 0F x) ⟩
+ callDepth x₁ ⊔ (callDepth x ⊔ stmtCallDepth s) ⊔ callDepth e
+ ≡⟨ ⊔-solve 4 (λ a b c d → (b ⊕ (a ⊕ c)) ⊕ d ⊜ (a ⊕ (b ⊕ c)) ⊕ d) refl (callDepth x) (callDepth x₁) (stmtCallDepth s) (callDepth e) ⟩
+ callDepth x ⊔ (callDepth x₁ ⊔ stmtCallDepth s) ⊔ callDepth e
+ ∎
+ where
+ inner = rec (_ , _ , declare x₁ (if wknAt 0F x then s)) (declare∘if<if∘declare x x₁ s) (declare∘if-stateless stateless) e
+ proj₂ (inlineHelper (_ , _ , (if x then invoke p es)) rec stateless e) = contradiction (if _ then invoke p es) stateless
+ proj₂ (inlineHelper (_ , _ , (if x then (if x₁ then s))) rec stateless e) = begin
+ callDepth (proj₁ inner)
+ ≤⟨ proj₂ inner ⟩
+ callDepth x ⊔ callDepth x₁ ⊔ stmtCallDepth s ⊔ callDepth e
+ ≡⟨ ⊔-solve 4 (λ a b c d → ((a ⊕ b) ⊕ c) ⊕ d ⊜ (a ⊕ (b ⊕ c)) ⊕ d) refl (callDepth x) (callDepth x₁) (stmtCallDepth s) (callDepth e) ⟩
+ callDepth x ⊔ (callDepth x₁ ⊔ stmtCallDepth s) ⊔ callDepth e
+ ∎
+ where
+ inner = rec (_ , _ , (if x && x₁ then s)) (if<if∘if x x₁ s) (if-stateless stateless) e
+ proj₂ (inlineHelper (_ , _ , (if x then (if x₁ then s else s₁))) rec stateless e) = begin
+ callDepth (proj₁ inner)
+ ≤⟨ proj₂ inner ⟩
+ callDepth x ⊔ (callDepth (wknAt 0F x₁) ⊔ (stmtCallDepth (wknStatementAt bool 0F (wknStatementAt bool 0F s)) ⊔ stmtCallDepth (wknStatementAt bool 0F (wknStatementAt bool 0F s₁)))) ⊔ callDepth e
+ ≡⟨ congₙ 3 (λ m n o → callDepth x ⊔ (m ⊔ (n ⊔ o)) ⊔ callDepth e) (wknAt-pres-callDepth 0F x₁) (trans (wkn-pres-callDepth bool 0F (wknStatementAt bool 0F s)) (wkn-pres-callDepth bool 0F s)) (trans (wkn-pres-callDepth bool 0F (wknStatementAt bool 0F s₁)) (wkn-pres-callDepth bool 0F s₁)) ⟩
+ callDepth x ⊔ (callDepth x₁ ⊔ (stmtCallDepth s ⊔ stmtCallDepth s₁)) ⊔ callDepth e
+ ≡⟨ ⊔-solve 5 (λ a b c d e → (a ⊕ (b ⊕ (c ⊕ d))) ⊕ e ⊜ (a ⊕ ((b ⊕ c) ⊕ d)) ⊕ e) refl (callDepth x) (callDepth x₁) (stmtCallDepth s) (stmtCallDepth s₁) (callDepth e) ⟩
+ callDepth x ⊔ (callDepth x₁ ⊔ stmtCallDepth s ⊔ stmtCallDepth s₁) ⊔ callDepth e
+ ∎
+ where
+ inner = rec (_ , _ , if∙if x x₁ s s₁) (if∙if<if‿if‿else x x₁ s s₁) (if∙if-stateless stateless) e
+ proj₂ (inlineHelper (_ , _ , (if x then for m s)) rec stateless e) = begin
+ callDepth (proj₁ inner)
+ ≤⟨ proj₂ inner ⟩
+ callDepth x ⊔ stmtCallDepth (wknStatementAt bool 1F s) ⊔ callDepth e
+ ≡⟨ cong (λ m → callDepth x ⊔ m ⊔ callDepth e) (wkn-pres-callDepth bool 1F s) ⟩
+ callDepth x ⊔ stmtCallDepth s ⊔ callDepth e
+ ∎
+ where
+ inner = rec (_ , _ , for‿if x m s) (for‿if<if‿for x m s) (for‿if-stateless stateless) e
+ proj₂ (inlineHelper (_ , _ , (if x then s else s₁)) rec stateless e) = begin
+ callDepth (proj₁ inner)
+ ≤⟨ proj₂ inner ⟩
+ callDepth x ⊔ (stmtCallDepth (wknStatementAt bool 0F s) ⊔ stmtCallDepth (wknStatementAt bool 0F s₁)) ⊔ callDepth e
+ ≡⟨ cong₂ (λ m n → callDepth x ⊔ (m ⊔ n) ⊔ callDepth e) (wkn-pres-callDepth bool 0F s) (wkn-pres-callDepth bool 0F s₁) ⟩
+ callDepth x ⊔ (stmtCallDepth s ⊔ stmtCallDepth s₁) ⊔ callDepth e
+ ≡⟨ ⊔-solve 4 (λ a b c d → (a ⊕ (b ⊕ c)) ⊕ d ⊜ ((a ⊕ b) ⊕ c) ⊕ d) refl (callDepth x) (stmtCallDepth s) (stmtCallDepth s₁) (callDepth e) ⟩
+ callDepth x ⊔ stmtCallDepth s ⊔ stmtCallDepth s₁ ⊔ callDepth e
+ ∎
+ where
+ inner = rec (_ , _ , if∙if′ x s s₁) (if∙if′<if‿else x s s₁) (if∙if′-stateless stateless) e
+ proj₂ (inlineHelper (n , Γ , for m s) rec stateless {ret} e) = helper
+ (stmtCallDepth s)
+ (λ e i →
+ rec
+ (_ , _ , declare (lit (i ′f)) s)
+ (inj₂ (refl , inj₁ (ℕₚ.n<1+n (index₁ s))))
+ (declare-stateless stateless)
+ e)
+ e
+ (Vec.allFin m)
+ where
+ helper : ∀ {n m} k (f : ∀ {n : ℕ} e (i : Fin m) → ∃ λ e′ → callDepth e′ ℕ.≤ k ⊔ callDepth e) → ∀ e xs → callDepth (Vec.foldl (λ _ → Expression Γ ret) {n} (λ {n} e i → proj₁ (f {n} e i)) e xs) ℕ.≤ k ⊔ callDepth e
+ helper k f e [] = ℕₚ.m≤n⊔m k (callDepth e)
+ helper k f e (x ∷ xs) = begin
+ callDepth (Vec.foldl _ (λ e i → proj₁ (f e i)) (proj₁ (f e x)) xs)
+ ≤⟨ helper k f (proj₁ (f e x)) xs ⟩
+ k ⊔ callDepth (proj₁ (f e x))
+ ≤⟨ ℕₚ.⊔-monoʳ-≤ k (proj₂ (f e x)) ⟩
+ k ⊔ (k ⊔ callDepth e)
+ ≡⟨ ⊔-solve 2 (λ a b → a ⊕ (a ⊕ b) ⊜ a ⊕ b) refl k (callDepth e) ⟩
+ k ⊔ callDepth e
+ ∎
+
+inlineFunction : Function Γ ret → All (Expression Δ) Γ → Expression Δ ret
+inlineFunction (declare e f) args = inlineFunction f (subst e args ∷ args)
+inlineFunction (_∙return_ s {stateless} e) args =
+ subst
+ (proj₁ (Wf.All.wfRec
+ inlineRelWf
+ _
+ inlinePredicate
+ inlineHelper
+ (_ , _ , s)
+ (toWitnessFalse stateless)
+ e))
+ args
+
+inlineFunction-lowers-callDepth : ∀ (f : Function Δ ret) (args : All (Expression Γ) Δ) → callDepth (inlineFunction f args) ℕ.≤ funCallDepth f ⊔ callDepth′ args
+inlineFunction-lowers-callDepth (declare e f) args = begin
+ callDepth (inlineFunction f (subst e args ∷ args))
+ ≤⟨ inlineFunction-lowers-callDepth f (subst e args ∷ args) ⟩
+ funCallDepth f ⊔ (callDepth (subst e args) ⊔ callDepth′ args)
+ ≤⟨ ℕₚ.⊔-monoʳ-≤ (funCallDepth f) (ℕₚ.⊔-monoˡ-≤ (callDepth′ args) (subst-pres-callDepth e args)) ⟩
+ funCallDepth f ⊔ (callDepth e ⊔ callDepth′ args ⊔ callDepth′ args)
+ ≡⟨ ⊔-solve 3 (λ a b c → a ⊕ ((b ⊕ c) ⊕ c) ⊜ (a ⊕ b) ⊕ c) refl (funCallDepth f) (callDepth e) (callDepth′ args) ⟩
+ funCallDepth f ⊔ callDepth e ⊔ callDepth′ args
+ ∎
+inlineFunction-lowers-callDepth (_∙return_ s {stateless} e) args = begin
+ callDepth (subst (proj₁ theCall) args) ≤⟨ subst-pres-callDepth (proj₁ theCall) args ⟩
+ callDepth (proj₁ theCall) ⊔ callDepth′ args ≤⟨ ℕₚ.⊔-monoˡ-≤ (callDepth′ args) (proj₂ theCall) ⟩
+ stmtCallDepth s ⊔ callDepth e ⊔ callDepth′ args ∎
+ where
+ theCall = Wf.All.wfRec
+ inlineRelWf
+ _
+ inlinePredicate
+ inlineHelper
+ (_ , _ , s)
+ (toWitnessFalse stateless)
+ e
diff --git a/src/Helium/Data/Pseudocode/Properties.agda b/src/Helium/Data/Pseudocode/Properties.agda
new file mode 100644
index 0000000..d73b4dd
--- /dev/null
+++ b/src/Helium/Data/Pseudocode/Properties.agda
@@ -0,0 +1,109 @@
+------------------------------------------------------------------------
+-- Agda Helium
+--
+-- Basic properties of the pseudocode data types
+------------------------------------------------------------------------
+
+{-# OPTIONS --without-K --safe #-}
+
+module Helium.Data.Pseudocode.Properties where
+
+import Data.Nat as ℕ
+open import Data.Product using (_,_; uncurry)
+open import Data.Vec using ([]; _∷_)
+open import Function using (_∋_)
+open import Helium.Data.Pseudocode.Core
+import Relation.Binary.Consequences as Consequences
+open import Relation.Binary.PropositionalEquality using (_≡_; refl; cong; cong₂)
+open import Relation.Nullary using (Dec; yes; no)
+open import Relation.Nullary.Decidable.Core using (map′)
+open import Relation.Nullary.Product using (_×-dec_)
+
+infixl 4 _≟ᵗ_ _≟ˢ_
+
+_≟ᵗ_ : ∀ (t t′ : Type) → Dec (t ≡ t′)
+bool ≟ᵗ bool = yes refl
+bool ≟ᵗ int = no (λ ())
+bool ≟ᵗ fin n = no (λ ())
+bool ≟ᵗ real = no (λ ())
+bool ≟ᵗ bit = no (λ ())
+bool ≟ᵗ bits n = no (λ ())
+bool ≟ᵗ tuple n x = no (λ ())
+bool ≟ᵗ array t′ n = no (λ ())
+int ≟ᵗ bool = no (λ ())
+int ≟ᵗ int = yes refl
+int ≟ᵗ fin n = no (λ ())
+int ≟ᵗ real = no (λ ())
+int ≟ᵗ bit = no (λ ())
+int ≟ᵗ bits n = no (λ ())
+int ≟ᵗ tuple n x = no (λ ())
+int ≟ᵗ array t′ n = no (λ ())
+fin n ≟ᵗ bool = no (λ ())
+fin n ≟ᵗ int = no (λ ())
+fin m ≟ᵗ fin n = map′ (cong fin) (λ { refl → refl }) (m ℕ.≟ n)
+fin n ≟ᵗ real = no (λ ())
+fin n ≟ᵗ bit = no (λ ())
+fin n ≟ᵗ bits n₁ = no (λ ())
+fin n ≟ᵗ tuple n₁ x = no (λ ())
+fin n ≟ᵗ array t′ n₁ = no (λ ())
+real ≟ᵗ bool = no (λ ())
+real ≟ᵗ int = no (λ ())
+real ≟ᵗ fin n = no (λ ())
+real ≟ᵗ real = yes refl
+real ≟ᵗ bit = no (λ ())
+real ≟ᵗ bits n = no (λ ())
+real ≟ᵗ tuple n x = no (λ ())
+real ≟ᵗ array t′ n = no (λ ())
+bit ≟ᵗ bool = no (λ ())
+bit ≟ᵗ int = no (λ ())
+bit ≟ᵗ fin n = no (λ ())
+bit ≟ᵗ real = no (λ ())
+bit ≟ᵗ bit = yes refl
+bit ≟ᵗ bits n = no (λ ())
+bit ≟ᵗ tuple n x = no (λ ())
+bit ≟ᵗ array t n = no (λ ())
+bits n ≟ᵗ bool = no (λ ())
+bits n ≟ᵗ int = no (λ ())
+bits n ≟ᵗ fin n₁ = no (λ ())
+bits n ≟ᵗ real = no (λ ())
+bits m ≟ᵗ bit = no (λ ())
+bits m ≟ᵗ bits n = map′ (cong bits) (λ { refl → refl }) (m ℕ.≟ n)
+bits n ≟ᵗ tuple n₁ x = no (λ ())
+bits n ≟ᵗ array t′ n₁ = no (λ ())
+tuple n x ≟ᵗ bool = no (λ ())
+tuple n x ≟ᵗ int = no (λ ())
+tuple n x ≟ᵗ fin n₁ = no (λ ())
+tuple n x ≟ᵗ real = no (λ ())
+tuple n x ≟ᵗ bit = no (λ ())
+tuple n x ≟ᵗ bits n₁ = no (λ ())
+tuple _ [] ≟ᵗ tuple _ [] = yes refl
+tuple _ [] ≟ᵗ tuple _ (y ∷ ys) = no (λ ())
+tuple _ (x ∷ xs) ≟ᵗ tuple _ [] = no (λ ())
+tuple _ (x ∷ xs) ≟ᵗ tuple _ (y ∷ ys) = map′ (λ { (refl , refl) → refl }) (λ { refl → refl , refl }) (x ≟ᵗ y ×-dec tuple _ xs ≟ᵗ tuple _ ys)
+tuple n x ≟ᵗ array t′ n₁ = no (λ ())
+array t n ≟ᵗ bool = no (λ ())
+array t n ≟ᵗ int = no (λ ())
+array t n ≟ᵗ fin n₁ = no (λ ())
+array t n ≟ᵗ real = no (λ ())
+array t n ≟ᵗ bit = no (λ ())
+array t n ≟ᵗ bits n₁ = no (λ ())
+array t n ≟ᵗ tuple n₁ x = no (λ ())
+array t m ≟ᵗ array t′ n = map′ (uncurry (cong₂ array)) (λ { refl → refl , refl }) (t ≟ᵗ t′ ×-dec m ℕ.≟ n)
+
+_≟ˢ_ : ∀ (t t′ : Sliced) → Dec (t ≡ t′)
+bits ≟ˢ bits = yes refl
+bits ≟ˢ array x = no (λ ())
+array x ≟ˢ bits = no (λ ())
+array x ≟ˢ array y = map′ (cong array) (λ { refl → refl }) (x ≟ᵗ y)
+
+bits-injective : ∀ {m n} → (Type ∋ bits m) ≡ bits n → m ≡ n
+bits-injective refl = refl
+
+array-injective₁ : ∀ {t t′ m n} → (Type ∋ array t m) ≡ array t′ n → t ≡ t′
+array-injective₁ refl = refl
+
+array-injective₂ : ∀ {t t′ m n} → (Type ∋ array t m) ≡ array t′ n → m ≡ n
+array-injective₂ refl = refl
+
+typeEqRecomp : ∀ {t t′} → .(eq : t ≡ t′) → t ≡ t′
+typeEqRecomp = Consequences.dec⇒recomputable _≟ᵗ_