summaryrefslogtreecommitdiff
path: root/src/Cfe/Function/Power.agda
diff options
context:
space:
mode:
authorChloe Brown <chloe.brown.00@outlook.com>2021-04-29 20:58:04 +0100
committerChloe Brown <chloe.brown.00@outlook.com>2021-04-29 20:58:04 +0100
commit8abb1b5601fabf5e7560d08faa6e633e60663e0a (patch)
tree99e76379b280cc16bc869830ba3a3b89e5c99c12 /src/Cfe/Function/Power.agda
parent0708355c7988345c98961cad087dc56eeb16ea7f (diff)
Finally prove that e [ μ e / zero ] ≈ μ e.
Complete proof of generator.
Diffstat (limited to 'src/Cfe/Function/Power.agda')
-rw-r--r--src/Cfe/Function/Power.agda37
1 files changed, 0 insertions, 37 deletions
diff --git a/src/Cfe/Function/Power.agda b/src/Cfe/Function/Power.agda
deleted file mode 100644
index da3b335..0000000
--- a/src/Cfe/Function/Power.agda
+++ /dev/null
@@ -1,37 +0,0 @@
-{-# OPTIONS --without-K --safe #-}
-
-module Cfe.Function.Power where
-
-open import Data.Nat using (ℕ)
-open import Data.Product using (∃-syntax; _×_)
-open import Function using (id; _∘_)
-open import Level using (Level; _⊔_)
-open import Relation.Binary using (Rel; REL)
-open import Relation.Binary.PropositionalEquality using (cong; _≡_)
-
-private
- variable
- a : Level
- A : Set a
-
-infix 10 _^_
-
-------------------------------------------------------------------------
--- Definition
-
-_^_ : (A → A) → ℕ → A → A
-f ^ ℕ.zero = id
-f ^ ℕ.suc n = f ∘ f ^ n
-
-------------------------------------------------------------------------
--- Properties
-
-f∼g⇒fⁿ∼gⁿ :
- ∀ {a b ℓ} {A : Set a} {B : Set b} (_∼_ : REL A B ℓ) {f g 0A 0B} →
- 0A ∼ 0B → (∀ {x y} → x ∼ y → f x ∼ g y) → ∀ n → (f ^ n) 0A ∼ (g ^ n) 0B
-f∼g⇒fⁿ∼gⁿ _ refl ext ℕ.zero = refl
-f∼g⇒fⁿ∼gⁿ ∼ refl ext (ℕ.suc n) = ext (f∼g⇒fⁿ∼gⁿ ∼ refl ext n)
-
-fⁿf≡fⁿ⁺¹ : ∀ (f : A → A) n → (f ^ n) ∘ f ≡ f ^ (ℕ.suc n)
-fⁿf≡fⁿ⁺¹ f ℕ.zero = _≡_.refl
-fⁿf≡fⁿ⁺¹ f (ℕ.suc n) = cong (f ∘_) (fⁿf≡fⁿ⁺¹ f n)